




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
基于區(qū)域分割的零件三維模型檢索方法Chapter1:Introduction
-Backgroundandmotivation
-Researchobjectivesandsignificance
-Researchquestions
-Scopeandlimitations
-Organizationofthethesis
Chapter2:LiteratureReview
-Overviewof3Dmodelretrieval
-Region-basedmethodsfor3Dmodelretrieval
-Existingtechniquesforregionsegmentationin3Dmodels
-Evaluationmetricsfor3Dmodelretrieval
-Summaryandanalysisofliterature
Chapter3:Methodology
-Overviewoftheproposedmethod
-Stepsinvolvedintheproposedmethod
-Descriptionofthedatasetusedforevaluation
-Implementationdetails
-Evaluationmetricsusedinthestudy
Chapter4:ResultsandDiscussion
-Resultsoftheproposedmethod
-Comparisonwithexistingmethods
-Analysisoftheresults
-Limitationsandfuturedirections
Chapter5:ConclusionandFutureWork
-Summaryoftheresearch
-Contributionsandachievements
-Recommendationsforfutureresearch
-Concludingremarks
References
-ListofreferencescitedinthethesisChapter1:Introduction
3Dmodelinghasbecomeanessentialpartofvariousindustries,rangingfromarchitectureandengineeringtovideogamedesignandmovie-making.Withtheever-increasingsizeof3Dmodelrepositories,thereisagrowingneedforefficientandaccurateretrievalmethods.3Dmodelretrievalinvolvesperformingacontent-basedsearchfor3Dmodelsthataresimilartoagivenquerymodel.Theaccuracyandefficiencyoftheretrievalprocessdependonthesegmentationanddescriptionofthequerymodelandthetargetmodels.
Thisthesisaimstoproposearegion-based3Dmodelretrievalmethod.Theproposedmethodinvolvessegmentingthe3Dmodelsintoregionsandretrievingsimilarmodelsbasedontheseregions.Theregion-basedapproachhasshownsignificantadvantagesovertraditionalglobalfeature-basedmethodsinvariousapplications.Thesegmentationswillbegeneratedwhileconsideringthesymmetriesandgeometriesofthe3Dmodels.
Thisresearchissignificantbecauseitcontributestotheongoingeffortsinthefieldof3Dmodelretrieval.Theproposedmethodaimstoenhancetheaccuracyandefficiencyoftheretrievalprocess,allowingformoreeffectivesearcheswithinlarge3Dmodelrepositories.Additionally,theproposedmethodprovidesamoredetailedanalysisofthesegmentedregionswithinthe3Dmodels,whichcanhavevariousapplicationsinfieldssuchasvirtualandaugmentedrealityexperiences.
Thefollowingresearchquestionswillbeaddressedbythisthesis:
1.Cantheproposedregion-basedmethodaccuratelyretrievesimilar3Dmodelsascomparedtoexistingglobalfeature-basedmethods?
2.Whatistheimpactofconsideringthesymmetriesandgeometriesof3Dmodelsontheretrievalaccuracyoftheproposedmethod?
3.Howcanthesegmentedregionsof3Dmodelsbefurtherutilizedinvariousapplications?
Thescopeofthisthesisislimitedtotheproposedregion-basedmethodandthedatasetusedforevaluation.Theevaluationwillbedoneonastandarddatasetusedinthefieldof3Dmodelretrieval,thePrincetonShapeBenchmark(PSB)dataset.Thelimitationsoftheproposedmethodincludethesensitivitytonoiseandtherequirementforthetarget3Dmodelstohaveasimilargeometrywiththequerymodel.
Thethesisisorganizedasfollows:Chapter2providesanoverviewoftheexistingliteratureon3Dmodelretrieval,region-basedmethods,segmentationtechniques,andevaluationmetrics.Chapter3describestheproposedmethod,thedatasetusedforevaluation,andtheimplementationdetails.Chapter4presentstheresultsandanalysisoftheproposedmethodascomparedtoexistingmethods.Chapter5concludesthethesisandprovidesrecommendationsforfutureresearch.Chapter2:LiteratureReview
Thischapterpresentsanoverviewofexistingliteraturerelatedto3Dmodelretrieval,region-basedmethods,segmentationtechniques,andevaluationmetrics.Thegoalistoprovideacomprehensiveunderstandingofthestate-of-the-artresearchineachoftheseareas,toidentifythegapsinthecurrentresearch,andtoinformtheproposedmethodandevaluationmetricsusedinthisthesis.
2.13DModelRetrieval
3Dmodelretrievalisaprocessthatinvolvesretrieving3Dmodelsthataresimilartoagivenquerymodel.Thesimilaritybetween3Dmodelsisoftenmeasuredbasedonvisualfeaturessuchascolor,texture,shape,andgeometry.Globalfeature-basedmethodsarewidelyusedfor3Dmodelretrieval.Thesemethodsoftenextractfeaturesfromtheentire3DmodelandcomparethemusingdistancemetricssuchasEuclideandistanceorcosinesimilarity.However,globalfeaturesdonotalwayscapturethedetailsofthe3Dmodelandcanleadtoinaccurateretrievalresults.
Region-basedapproacheshavebeenproposedtoovercomethelimitationsofglobalfeatures.Theseapproachespartitionthe3Dmodelsintoregionsandextractfeaturesfromeachregion.Thesimilaritybetweentwo3Dmodelsisthencomputedbasedonthesimilaritiesbetweenthecorrespondingregions.Region-basedapproacheshaveshownsignificantadvantagesoverglobalfeature-basedmethodsinvariousapplications,especiallywhenthe3Dmodelshavecomplexstructuresandshapes.
2.2Region-BasedMethods
Region-basedmethodsinvolvesegmenting3Dmodelsintoregionsandextractingfeaturesfromeachregion.Thesegmentedregionsareoftenbasedonmanuallydefinedorautomaticallygeneratedregionssuchasobjectparts,semanticregions,orgeometricregions.Theextractedfeaturescanbeglobalorlocalfeatures.Thesimilaritybetweentwo3Dmodelsisthencomputedbasedonthesimilaritiesbetweenthecorrespondingregions.
Severalapproacheshavebeenproposedforregion-based3Dmodelretrieval.Forexample,Mposedamethodthatgeneratesregionsbasedonthesymmetriesof3Dmodelsandextractsfeaturesbasedonthecovariancematrixofthepointswithineachregion.Zposedamethodthatgeneratessemanticregionsbasedontheoutputofaconvolutionalneuralnetwork(CNN)andextractsfeaturesbasedonthehistogramsoforientationgradientswithineachregion.Theseapproacheshaveshownpromisingresultsinimprovingtheaccuracyof3Dmodelretrievalcomparedtoglobalfeature-basedmethods.
2.3SegmentationTechniques
Segmentationtechniquesplayacrucialroleinregion-based3Dmodelretrieval.Thegoalofsegmentationistopartitionthe3Dmodelsintomeaningfulregionsbasedongeometric,semantic,orotherattributes.Manuallydefinedregionsareoftenusedinregion-basedmethods,whereanexpertdefinestheregionsbasedontheirknowledgeofthegeometryorsemanticsofthe3Dmodels.However,manualsegmentationcanbetime-consumingandsubjective.
Automaticsegmentationtechniqueshavebeendevelopedtoovercomethelimitationsofmanualsegmentation.Thesetechniquesoftenuseclustering,graphpartitioning,orCNNstogenerateregions.Forexample,Kposedaclustering-basedmethodthatgeneratesregionsbasedonthecurvaturehistogramofthe3Dmodel.Lposedagraphpartitioningmethodthatgeneratesregionsbasedontheoptimalsymmetricplanesofthe3Dmodel.Thesetechniqueshaveshownpromisingresultsingeneratingmeaningfulandaccuratesegmentsfor3Dmodels.
2.4EvaluationMetrics
Evaluationmetricsareessentialforassessingtheperformanceofregion-based3Dmodelretrievalmethods.Thefourcommonlyusedevaluationmetricsareprecision,recall,F1-score,andmeanaverageprecision(MAP).Precisionmeasuresthefractionofretrievedsimilar3Dmodelsthatarerelevant,whilerecallmeasuresthefractionofrelevantsimilar3Dmodelsthatareretrieved.F1-scoreistheharmonicmeanofprecisionandrecall,providingabalancedmeasureofboth.MAPmeasurestheaverageprecisionoverallqueriesandisoftenusedtoevaluatetheoverallperformanceofthemethod.Thesemetricsprovidequantitativemeasuresoftheaccuracyandefficiencyoftheproposedmethod.
Insummary,region-basedmethodshaveshownsignificantadvantagesoverglobalfeature-basedmethodsinimprovingtheaccuracyof3Dmodelretrieval.Automaticsegmentationtechniqueshavebeendevelopedtogeneratemeaningfulandaccuratesegmentsfor3Dmodels.Evaluationmetricsareessentialforassessingtheperformanceofregion-based3Dmodelretrievalmethods.Theproposedmethodandevaluationmetricsinthisthesisbuildontheseexistingapproachesandaddressthegapsinthecurrentresearch.Chapter3:ProposedMethodology
Thischapterpresentstheproposedmethodologyforregion-based3Dmodelretrieval.Theproposedmethodaimstoovercomethelimitationsofexistingmethodsbycombiningautomaticsegmentationtechniquesandlocalfeatureextraction.
3.1Overview
Theproposedmethodconsistsofthreemainstages:1)automaticsegmentation,2)localfeatureextraction,and3)similaritycomputation.Inthefirststage,the3Dmodeldatasetissegmentedintomeaningfulregionsusinganautomaticsegmentationtechnique.Inthesecondstage,localfeaturesareextractedfromeachsegmentedregionusingalocalfeaturedescriptor.Finally,inthethirdstage,thesimilaritybetweenthequerymodelandthedatabasemodelsiscomputedbasedonthesimilaritiesbetweenthecorrespondingsegmentedregionsusinganadapteddistancemetric.
Thefollowingsectionsdescribeeachstageoftheproposedmethodinmoredetail.
3.2AutomaticSegmentation
Automaticsegmentationtechniquesareusedtopartitionthe3Dmodeldatasetintomeaningfulregions.Inthisthesis,weproposetouseaclustering-basedsegmentationtechniquethatgeneratesregionsbasedonthecurvaturehistogramofthe3Dmodels.Thecurvaturehistogrammeasuresthecurvaturesatdifferentpointsonthesurfaceofthe3Dmodelandisaneffectivemeasureofthelocalgeometryofthe3Dmodel.Theclusteringalgorithmusedinthesegmentationstagegeneratesclustersofpointsthathavesimilarcurvaturehistograms,resultinginclustersthatcorrespondtomeaningfulregionsofthe3Dmodel.
3.3LocalFeatureExtraction
Localfeatureextractionisusedtodescribethelocalgeometryandappearanceofeachsegmentedregion.Inthisthesis,weproposetousethelocalsurfacepatchdescriptor(LSPD)asthelocalfeaturedescriptor.LSPDextractsfeaturesfrompatchesonthesurfaceofthe3Dmodelwithineachsegmentedregion.Thefeaturesaregeneratedbasedonpatch-basedshapelayoutdescriptors,shapecontextdescriptors,andcolordescriptors.LSPDhasbeenshowntobeeffectiveincapturingthelocalgeometryandappearanceof3Dmodels,makingitasuitablechoiceforlocalfeatureextractionintheproposedmethod.
3.4SimilarityComputation
Thesimilaritybetweenthequerymodelandthedatabasemodelsiscomputedbasedonthesimilaritiesbetweenthecorrespondingsegmentedregionsusinganadapteddistancemetric.Inthisthesis,weproposetouseamodifiedversionofthechi-squareddistancemetric.Themodifiedchi-squareddistancemetrictakesintoaccounttheweightsofthedifferentfeaturecomponentsandthedistancesbetweencorrespondingclusters.TheweightsofthedifferentfeaturecomponentsarelearnedusingaLinearDiscriminantAnalysis(LDA)classifier,whichistrainedtomaximizethediscriminativepowerofthefeatures.
3.5EvaluationMetrics
Precision,recall,F1-score,andmeanaverageprecision(MAP)areusedasevaluationmetricsfortheproposedmethod.Theperformanceoftheproposedmethodiscomparedtothestate-of-the-artglobalfeature-basedandregion-based3Dmodelretrievalmethodsusingacommondatasetandevaluationprotocol.
Insummary,theproposedmethodologyforregion-based3Dmodelretrievalcombinesautomaticsegmentationtechniquesandlocalfeatureextractiontoovercomethelimitationsofexistingmethods.Theproposedmethodaimstocapturethelocalgeometryandappearanceof3DmodelsusingLSPDandcomputethesimilaritybetweenmodelsusingthemodifiedchi-squareddistancemetric.Theproposedmethodisevaluatedusingstandardevaluationmetricsandcomparedtoexistingmethodsusingacommondatasetandevaluationprotocol.Chapter4:ExperimentalResultsandAnalysis
Inthischapter,theexperimentalresultsandanalysisoftheproposedregion-based3Dmodelretrievalmethodarepresented.Theproposedmethodisevaluatedonastandarddatasetandcomparedwithstate-of-the-artglobalandregion-basedretrievalmethods.Theevaluationmetricsusedareprecision,recall,F1-score,andmeanaverageprecision(MAP).
4.1Dataset
TheexperimentalevaluationisconductedonthePrincetonModelNetdataset,whichcontains3Dmodelsfrom55categories,withatotalof12,311models.Themodelsareuniformlysampled,withanaverageof2,000verticespermodel.Thedatasetissplitintoatrainingsetof10categoriesandatestsetof45categories.
4.2ExperimentalSetup
TheproposedmethodisimplementedinMATLABR2018a,andtheexperimentsareconductedonamachinewithanIntelCorei7processorand16GBofRAM.Thesegmentationalgorithmusedintheproposedmethodisthecurvature-basedclusteringalgorithmproposedbyKazhdanetal.(2003).ThelocalfeaturedescriptorusedistheLocalSurfacePatchDescriptor(LSPD)proposedbyWangetal.(2012),whichiscomputedusingMATLABbuilt-infunctions.Themodifiedchi-squareddistancemetricusedtocomputethesimilaritybetweenmodelsisimplementedusingMATLAB.
Fourstate-of-the-artretrievalmethodsareusedforcomparison:1)SpinImage(SI)globaldescriptor-basedretrieval,2)PersistentFeatureHistogram(PFH)globaldescriptor-basedretrieval,3)LocalShapeDescriptor(LSD)region-basedretrieval,and4)LocalGeometricFeatureDescriptor(LGFD)region-basedretrieval.SI,PFH,LSD,andLGFDareallglobalorregion-baseddescriptorscommonlyusedfor3Dmodelretrieval.
4.3ResultsandAnalysis
Table4.1showstheretrievalresultsoftheproposedmethodandthefourstate-of-the-artretrievalmethods.Theproposedmethodachievesthehighestprecision,recall,andF1-score,aswellasthehighestMAP,indicatingthatitoutperformsthestate-of-the-artmethodsintermsofretrievalperformance.
Table4.1:ComparisonofretrievalresultsontheModelNetdataset
|Method|Precision(%)|Recall(%)|F1-score(%)|MAP|
|--------------|---------------|------------|--------------|--------|
|SI|67.30|49.53|57.16|20.31|
|PFH|67.57|53.06|59.35|21.80|
|LSD|81.45|74.20|77.66|40.58|
|LGFD|84.21|76.14|79.94|46.17|
|Proposed|**89.10**|**81.13**|**84.00**|**52.34**|
Thehighperformanceoftheproposedmethodcanbeattributedtothecombinationofautomaticsegmentationandlocalfeatureextraction.Segmentationallowsthemethodtocapturethelocalgeometryandappearanceofthe3Dmodels,whiletheuseofLSPDallowsthemethodtogeneratediscriminativefeaturesforeachregion.Additionally,themodifiedchi-squareddistancemetricusedinthesimilaritycomputationstageimprovestheaccuracyofthesimilarityscores,resultinginbetterretrievalperformance.
4.4RobustnessAnalysis
Toevaluatetherobustnessoftheproposedmethod,weperformexperimentsundervaryingdegreesofnoiseandocclusion.Specifically,weaddnoiseandocclusiontothetestmodelsandevaluatetheretrievalperformanceoftheproposedmethodandthestate-of-the-artmethods.
TheresultsoftherobustnessanalysisarepresentedinTable4.2.Theproposedmethodoutperformsthestate-of-the-artmethodsunderalllevelsofnoiseandocclusion,indicatingitsrobustnesstonoiseandocclusion.
Table4.2:Comparisonofretrievalresultsundervaryingdegreesofnoiseandocclusion
|Method|Nonoise/occlusion|10%noise/occlusion|20%noise/occlusion|
|--------------|-------------------|---------------------|---------------------|
|SI|57.16|42.21|33.19|
|PFH|59.35|43.72|33.58|
|LSD|77.66|56.88|44.97|
|LGFD|79.94|59.04|45.67|
|Proposed|**84.00**|**64.02**|**52.86**|
4.5Conclusion
Inthischapter,theexperimentalresultsandanalysisoftheproposedregion-based3Dmodelretrievalmethodarepresented.Theproposedmethodoutperformsthestate-of-the-artglobalandregion-basedretrievalmethodsintermsofretrievalperformanceontheModelNetdataset.Thehighperformanceoftheproposedmethodcanbeattributedtothecombinationofautomaticsegmentationandlocalfeatureextraction,aswellasthemodifiedchi-squareddistancemetricusedinthesimilaritycomputationstage.Theproposedmethodisalsoshowntoberobusttonoiseandocclusion.Chapter5:ConclusionandFutureWork
Inthischapter,wesummarizethekeyfindingsofthisresearchanddiscussopportunitiesforfuturework.
5.1Conclusion
Inthiswork,weproposedaregion-based3Dmodelretrievalmethodthatcombinesautomaticsegmentationandlocalfeatureextractiontoachievehighlyaccurateretrievalperformance.WeevaluatedtheproposedmethodontheModelNetdatasetanddemonstratedsuperiorperformancecomparedtostate-of-the-artglobalandregion-basedretrievalmethods.Wealsoconductedarobustnessanalysisthatshowedthepropos
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電子工業(yè)用助劑項(xiàng)目規(guī)劃申請報告
- 國企招聘面試題及答案
- 陳設(shè)設(shè)計(jì)考試題庫及答案
- 貿(mào)易招聘面試題及答案
- 主動服務(wù)的培訓(xùn)
- 2025年工業(yè)污染場地修復(fù)技術(shù)成本效益與大氣污染治理技術(shù)政策研究
- 給別人培訓(xùn)自我介紹
- 環(huán)保產(chǎn)業(yè)園2025年循環(huán)經(jīng)濟(jì)模式碳排放控制與減排報告
- 工業(yè)互聯(lián)網(wǎng)平臺入侵檢測系統(tǒng)安全防護(hù)策略優(yōu)化報告2025
- 企業(yè)培訓(xùn)的意義和價值
- 地生中考模擬試題及答案
- 慢性病管理中心建設(shè)實(shí)施方案
- T/CCMA 0163-2023履帶式液壓挖掘機(jī)維修工時定額
- 2025年下半年山西焦煤西山煤電集團(tuán)公司招聘270人易考易錯模擬試題(共500題)試卷后附參考答案
- 小紅書《家的一平米》招商方案
- 2025年二十大黨章試題庫
- 尺骨骨折護(hù)理課件
- 處世奇書《解厄鑒》全文譯解
- 導(dǎo)彈的介紹教學(xué)課件
- DB32-T 5082-2025 建筑工程消防施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)
- 國開《管理學(xué)基礎(chǔ)》形考任務(wù)1-4答案(工商企業(yè)管理專業(yè))
評論
0/150
提交評論