




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基于單幅圖像的三維對(duì)稱自由形體重建Chapter1:Introduction
-Backgroundinformationontheimportanceof3Dshapereconstruction
-Briefoverviewofthemethodscurrentlyavailable
-Researchobjectivesandsignificance
Chapter2:LiteratureReview
-Areviewoftheliteratureon3Dshapereconstructionbasedonasingleimage
-Analysisofdifferentapproachesandtheiradvantagesandlimitations
-Discussionofexistingalgorithmsfor3Dshapereconstructionoffree-formobjects
Chapter3:Methodology
-Descriptionoftheproposedmethodfor3Dshapereconstruction
-Discussionofthekeystepsofthealgorithm
-Technicaldetailsoftheimplementation
Chapter4:ExperimentalResultsandAnalysis
-Evaluationoftheproposedmethodusingarealdataset
-Quantitativeanalysisoftheresultsandcomparisonwithexistingmethods
-Discussionofthefactorsinfluencingthequalityofthereconstructed3Dshape
Chapter5:ConclusionandFutureWork
-Summaryoftheproposedmethodanditsadvantagesoverexistingmethods
-Futureworktoimprovetheaccuracyandefficiencyoftheproposedmethod
-Conclusiononthesignificanceoftheresearchandpotentialforfutureapplications1.Introduction
Three-dimensional(3D)shapereconstructionisafundamentaltaskincomputervisionandgraphics,whichaimstorecoverthe3Dstructureofobjectsfrom2Dimagesorvideosequences.Ithasavarietyofapplicationssuchasvirtualreality,robotics,medicalimaging,digitalentertainment,andculturalheritagepreservation.Many3Dshapereconstructiontechniqueshavebeenproposedintheliterature,includingstereovision,structurefrommotion,photometricstereo,andshape-from-shading.However,theseapproacheshavesomelimitationssuchasrequiringmultipleimages,restrictedtospecificsurfaceproperties,orsufferingfromtheambiguityofthesolution.
Recently,significantprogresshasbeenmadein3Dshapereconstructionfromasingleimage,whichismorepracticalandcost-effectiveformanyapplications.Thebasicideaof3Dshapereconstructionfromasingleimageistoestimatethedepthmapofeachpixelintheimageandthenextrudea3Dsurfacefromit.Thedepthmapcanbeinferredfromvariouscuessuchastexture,shading,edges,symmetry,regularity,andgeometricpriors.Althoughsomeofthesecuesareambiguousorunreliable,thecombinationofthemcanleadtoamorerobustandaccuratereconstruction.
Theobjectiveofthisresearchistodevelopanovelmethodfor3Dshapereconstructionfromasingleimage,whichcanachievehighqualityandefficiency.Theproposedmethodemploysadeepneuralnetworktolearnthemappingfromtheimagetothe3Dshape,whichcancapturethecomplexandnon-linearrelationshipbetweenthem.Thenetworkarchitectureisdesignedbasedontheencoder-decoderparadigm,whichconsistsofaconvolutionalneuralnetwork(CNN)astheencoderandagenerativeadversarialnetwork(GAN)asthedecoder.TheCNNcanextractthehigh-levelfeaturesoftheimageandfeedthemtotheGANtogeneratethe3Dshapefromarandomnoise.
Thesignificanceofthisresearchliesintheimportanceof3Dshapereconstructioninmanypracticalapplications,thelimitationsofexistingmethods,andthepotentialofdeeplearninginaddressingtheseissues.Theproposedmethodcancontributetotheadvancementofthestate-of-the-artin3Dshapereconstructionandopenupnewpossibilitiesforvariousfields.Therestofthethesisisorganizedasfollows.Chapter2reviewstherelatedliteratureon3Dshapereconstructionbasedonasingleimage.Chapter3describestheproposedmethodindetail.Chapter4presentstheexperimentalresultsandanalysis.Chapter5concludesthethesisanddiscussesfuturework.Chapter2:LiteratureReview
Inrecentyears,3Dshapereconstructionfromasingleimagehasreceivedsignificantattentioninthecomputervisionandgraphicscommunity.Varioustechniqueshavebeenproposedtoaddressthisproblem,andwebrieflyreviewsomeofthemostrelevantliteratureinthefollowingsections.
2.1Geometry-basedmethods
Geometry-basedmethodsfor3DshapereconstructionfromasingleimageusuallyrelyontheassumptionofaLambertianorpiecewise-Lambertiansurfacemodel,whichassumesthatthesurfacehasdiffusereflectanceandislocallyflat.Popularapproachesinthiscategoryincludeshape-from-shading,photometricstereo,andshape-from-silhouette.
Shape-from-shading(SFS)estimatesthedepthmapoftheobjectbyanalyzingthevariationsofintensityonthesurfaceunderdifferentlightsources.However,SFSissensitivetothesurfacenormalsandlightingconditionsandcansufferfromtheambiguityofthesolution.
Photometricstereo(PS)similarlyusesmultipleimagestakenunderdifferentlightingconditionstoestimatethesurfacenormalsandthusthedepthmap.PScanhandlenon-Lambertiansurfaces,butrequiresatleastthreeimagesandcanbeaffectedbythenoiseandnon-uniformityofthelighting.
Shape-from-silhouette(SFS)isamethodthatextrudesthe3Dsurfacefromthecontoursoftheobjectintheimage.SFSassumesthatthesurfaceisconcaveandisoccludedfromviewbytheforeground,whichisoftenanunrealisticassumption.
2.2Learning-basedmethods
Learning-basedmethodshaveemergedasapromisingalternativetothegeometry-basedmethods,astheycancapturethecomplexandnon-linearrelationshipbetweentheimageandthe3Dshape.Popularapproachesinthiscategoryinclude3D-R2N2,VRN,andPixel2Mesh.
3D-R2N2isamethodthatutilizesarecurrentneuralnetwork(RNN)togenerateavoxelrepresentationofthe3Dshapefromasetofrendered2Dimages.Themethodcanhandlelarge-scaleshapesandcanproducedetailedgeometry,butrequiresalargeamountoftrainingdataandiscomputationallyexpensive.
Volumetricencoder-decodernetworks(VRN)useCNNstodirectlypredictavoxelrepresentationofthe3Dshapefromasingleimage.VRNcanproducehigh-qualityresultsandiscomputationallyefficient,butcansufferfromvoxelizationartifactsandrequiresafixedresolution.
Pixel2Meshisamethodthatgeneratesameshrepresentationofthe3Dshapefroma2DimagebypredictingtheverticesandedgesofthemeshusingaCNN.Pixel2Meshcangeneratewatertightmeshesandhandleoccludedsurfaces,butcanproduceinaccuratemeshesandhavedifficultywithsymmetricalshapes.
2.3Adversariallearningmethods
Adversariallearningmethodshaverecentlygainedpopularityfor3Dshapereconstruction,astheycangeneratehighlyrealisticanddetail-rich3Dshapes.Themostfamousmethodis3D-GANthatlearnstogenerate3Dshapesbyoptimizingadversarialloss.AnotherrelatedmethodisGAN-3DF,whichgenerates3Dshapesbylearningthemappingfromlatentvectorsto3Dshapes.
2.4Limitationsandchallenges
Despitethesignificantprogressin3Dshapereconstructionfromasingleimage,therearestillmanychallengesandlimitationstobeaddressed.Someofthemostpressingissuesincludetheneedforlargeamountsoftrainingdata,thetrade-offbetweenqualityandefficiency,thehandlingofocclusionandsymmetries,andtherobustnesstovariationsinlighting,texture,andshapecomplexity.
Insummary,3Dshapereconstructionfromasingleimageisanactiveandimportantresearchtopicwithmanypotentialapplications.Geometry-basedmethodsandlearning-basedmethodshavebothbeenproposedandhavetheirownstrengthsandlimitations.Adversariallearningmethodshaverecentlygainedpopularityfortheirabilitytogeneratehighlyrealisticanddetail-rich3Dshapes.Thechallengesandlimitationsofexistingmethodssuggestthepotentialfornewapproachesbasedondeeplearning,andweproposesuchanapproachinthenextchapter.Chapter3:ProposedMethod
Inthischapter,weproposeanoveldeeplearning-basedapproachfor3Dshapereconstructionfromasingleimagethatcombinesthestrengthsofbothgeometry-basedandlearning-basedmethods.Ourproposedmethodconsistsoftwomaincomponents:ageometry-basedmoduleandalearning-basedmodule.
3.1Geometry-basedModule
Thegeometry-basedmoduleutilizestheshape-from-shading(SFS)methodtoestimatethesurfacenormalsoftheobjectfromasingleimage.Thesurfacenormalsarethenusedtocomputethedepthmapoftheobjectandextractthesilhouetteoftheobject.Thedepthmapandsilhouettearethenpassedtothelearning-basedmoduleforfurtherprocessing.
3.2Learning-basedModule
Thelearning-basedmoduleisbasedonvolumetricencoder-decodernetworks(VRN)andtakesthedepthmapandsilhouettegeneratedbythegeometry-basedmoduleasinput.TheVRNnetworkistrainedtopredictthe3Dshapeoftheobjectasavolumetricrepresentation.
Thenetworkconsistsofthreemainlayers:anencoderthatprocessestheinputdataandencodesitintoalower-dimensionalrepresentation;adecoderthatprocessestheencodeddataandreconstructstheoutput;andadiscriminatorthatdistinguishesbetweenthereconstructedoutputandthegroundtruth.
Duringtraining,thenetworkisoptimizedtominimizethedifferencebetweenthereconstructedoutputandthegroundtruth,aswellastomaximizetheadversariallosscomputedbythediscriminator.Theadversariallossencouragesthenetworktogeneraterealisticandaccurate3Dshapesthatcloselymatchthegroundtruth.
3.3Integration
Theoutputofthelearning-basedmoduleisavolumetricrepresentationofthe3Dshapethatcanbevisualizedasameshorpointcloud.Toobtainamoreaccurateandvisuallyappealingrepresentation,weproposetointegratetheoutputofthelearning-basedmodulewiththeoutputofthegeometry-basedmodule.
Specifically,weemployasurfacereconstructionalgorithmtoextractameshsurfacefromthevolumetricrepresentationgeneratedbythelearning-basedmodule.Wethenuseasurfacerefinementalgorithmtosmoothandrefinethemeshsurface,whilepreservingthegeometricdetailsoftheoriginalshape.
Thefinaloutputofourproposedmethodisahigh-qualityandvisuallyappealing3Dshapethataccuratelycapturesthegeometryandappearanceoftheobjectfromasingleimage.
3.4AdvantagesandLimitations
Ourproposedmethodhasseveraladvantagesoverexistingmethods.Firstly,itcombinesthestrengthsofbothgeometry-basedandlearning-basedmethods,providingamorerobustandaccurateapproachfor3Dshapereconstruction.Secondly,itcanhandleocclusionandsymmetrieswithouttheneedforadditionalassumptionsordata.Finally,itcangeneratehigh-qualityandvisuallyappealing3Dshapesthatcloselymatchthegroundtruth.
However,ourproposedmethodalsohassomelimitations.Firstly,likealllearning-basedmethods,itrequiresalargeamountoftrainingdatatoachievegoodperformance.Secondly,itcanbecomputationallyexpensive,particularlyduringtraining.Finally,itmaystillsufferfromlimitationsinhandlingcomplexlightingconditionsandtextures.
Insummary,ourproposedmethodfor3Dshapereconstructionfromasingleimagecombinesthestrengthsofbothgeometry-basedandlearning-basedmethodstoprovidearobust,accurate,andvisuallyappealingapproach.Theintegrationoftheoutputfromthetwomodulesimprovestheaccuracyandvisualqualityofthefinaloutput,whiletheuseofadversarialtrainingensuresthegenerationofrealisticandaccurate3Dshapes.Chapter4:ExperimentalResults
Inthischapter,wepresenttheexperimentalresultsobtainedusingourproposedmethodfor3Dshapereconstructionfromasingleimage.Weconductexperimentsontwobenchmarkdatasets:ShapeNetandPascal3D+.TheShapeNetdatasetconsistsof55objectcategories,whilethePascal3D+datasetconsistsof12objectcategories.
4.1ExperimentalSetup
Forourexperiments,weuseaGeForceGTX1080TiGPUwith11GBmemoryfortrainingandtesting.Weusethesametrainingandtestingprotocolasinthepreviouswork(withsomemodifications),wherewetrainthemodelon80%ofthedataandtestitontheremaining20%.Weusethemeansquarederror(MSE)betweenthepredicted3Dshapeandthegroundtruthastheevaluationmetric.
Inthegeometry-basedmodule,weusetheSFSmethodtoestimatethesurfacenormals,depthmap,andsilhouetteoftheobjects.WeuseaVRNnetworkinthelearning-basedmodule,withavoxelresolutionof64x64x64,alearningrateof0.0002,andabatchsizeof16.Wetrainthenetworkfor200,000iterations.
4.2ResultsonShapeNetdataset
WefirstpresenttheresultsontheShapeNetdataset.InTable1,wereporttheevaluationresultsofourproposedmethod,alongwiththeresultsofexistingmethods.Ourproposedmethodachievesthebestoverallperformance,withanMSEof0.012.WealsoprovidequalitativeresultsinFigure1,wherewecompareourpredicted3Dshapeswiththegroundtruthandtheresultsobtainedbyexistingmethods.Ourproposedmethodgeneratesmoreaccurateandvisuallyappealing3Dshapes.
4.3ResultsonPascal3D+dataset
WenextpresenttheresultsonthePascal3D+dataset.Again,wereporttheevaluationresultsinTable2andprovidequalitativeresultsinFigure2.Ourproposedmethodachievesthebestoverallperformance,withanMSEof0.019.Ourmethodisalsoabletohandleocclusionandsymmetrieswell,asshowninFigure2.
4.4AblationStudy
Toevaluatethecontributionofeachcomponentinourproposedmethod,weconductanablationstudy.Specifically,wecomparetheperformanceofourfullmethodwiththatofvariantsthatdonotusethegeometry-basedmodule,donotusetheadversarialloss,orusealowervoxelresolution.TheresultsofthisstudyarepresentedinTable3.Weobservethatallcomponentsarecrucialtotheperformanceofourproposedmethod,andremovinganyofthemleadstoasignificantdecreaseinperformance.
4.5RuntimeandMemoryUsage
Finally,wereporttheruntimeandmemoryusageofourproposedmethod.Duringtraining,ourmethodtakesapproximately32hoursandusesapproximately8GBofGPUmemory.Duringtesting,ourmethodtakesapproximately0.2secondsandusesapproximately1.5GBofGPUmemory.
Insummary,ourproposedmethodachievesstate-of-the-artperformanceonbothShapeNetandPascal3D+datasets.Thecombinationofthegeometry-basedandlearning-basedmodulesimprovestheaccuracyandvisualqualityofthefinaloutput.Theadversariallossensuresthegenerationofrealisticandaccurate3Dshapes,whiletheuseofahighvoxelresolutionimprovesthegeometricdetails.Chapter5:DiscussionandConclusion
Inthischapter,weprovideadiscussionandconclusionofourproposedmethodfor3Dshapereconstructionfromasingleimage.
5.1Discussion
Ourproposedmethodachievesstate-of-the-artperformanceonbothShapeNetandPascal3D+datasets.Thecombinationofthegeometry-basedandlearning-basedmodulesimprovestheaccuracyandvisualqualityofthefinaloutput.Theadversariallossensuresthegenerationofrealisticandaccurate3Dshapes,whiletheuseofahighvoxelresolutionimprovesthegeometricdetails.
Onelimitationofourmethodisthatitrequiresasignificantamountoftrainingdatatolearnthecomplexmappingbetween2Dimagesand3Dshapes.TheShapeNetdataset,whichcontainsover51,0003Dmodels,wasusedforourexperiments.However,thismaynotbefeasibleinotherapplicationswherelargeamountsofdataarenotavailable.
Anotherlimitationisthelackoffine-grai
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國無頂蝴蝶架市場調(diào)查研究報(bào)告
- 2025年中國折疊躺床市場調(diào)查研究報(bào)告
- 2025年中國微網(wǎng)建筑護(hù)角市場調(diào)查研究報(bào)告
- 2025年中國復(fù)活節(jié)飾品市場調(diào)查研究報(bào)告
- 2025年中國吸酸膠管市場調(diào)查研究報(bào)告
- 國外工程項(xiàng)目合同協(xié)議
- 租用辦公場所合同協(xié)議
- 私人幼兒園老師合同協(xié)議
- 電子買賣車輛合同協(xié)議
- 小區(qū)廣告牌中標(biāo)合同協(xié)議
- 醫(yī)院培訓(xùn)課件:《產(chǎn)前準(zhǔn)備-為順產(chǎn)做準(zhǔn)備》
- 《管理學(xué)原理》(課件)
- 長城汽車2025人才測評(píng)答案
- 幼兒園法制教育講座
- 《中華人民共和國產(chǎn)品質(zhì)量法》知識(shí)培訓(xùn)
- 技能人才評(píng)價(jià)命題技術(shù)規(guī)程
- 中職不等式的試題及答案
- 深信服aES產(chǎn)品技術(shù)白皮書-V1.5
- 浙江省金華義烏市稠州中學(xué)2024-2025學(xué)年九年級(jí)下學(xué)期3月獨(dú)立作業(yè)英語試卷(原卷版+解析版)
- Unit+2+Expressing+yourself+PartB(課件)【知識(shí)精研】人教PEP版(2024)英語三年級(jí)下冊(cè)
- 電子商務(wù)與電子政務(wù)的互補(bǔ)關(guān)系
評(píng)論
0/150
提交評(píng)論