




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省昭通市昭陽區(qū)蘇家院鄉(xiāng)中學2023年初三下學期3月月考數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,某同學不小心把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃.那么最省事的辦法是帶()A.帶③去 B.帶②去 C.帶①去 D.帶①②去2.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.3.估計﹣÷2的運算結果在哪兩個整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和44.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.5.估計介于()A.0與1之間 B.1與2之間 C.2與3之間 D.3與4之間6.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.7.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)8.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,F(xiàn)N∥DC,則∠F的度數(shù)為()A.70° B.80° C.90° D.100°9.甲、乙、丙三家超市為了促銷同一種定價為m元的商品,甲超市連續(xù)兩次降價20%;乙超市一次性降價40%;丙超市第一次降價30%,第二次降價10%,此時顧客要購買這種商品,最劃算的超市是()A.甲 B.乙 C.丙 D.都一樣10.碳納米管的硬度與金剛石相當,卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米11.某班為獎勵在學校運動會上取得好成績的同學,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.12.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為相反數(shù)的點是A.點A和點C B.點B和點DC.點A和點D D.點B和點C二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB為⊙O的弦,C為弦AB上一點,設AC=m,BC=n(m>n),將弦AB繞圓心O旋轉一周,若線段BC掃過的面積為(m2﹣n2)π,則=______14.如果x3nym+4與﹣3x6y2n是同類項,那么mn的值為_____.15.函數(shù)y=的定義域是________.16.方程x-1=的解為:______.17.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中所有結論正確的是______(填寫番號).18.當x=_____時,分式值為零.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“分組合作學習”已成為推動課堂教學改革,打造自主高效課堂的重要措施.某中學從全校學生中隨機抽取部分學生對“分組合作學習”實施后的學習興趣情況進行調查分析,統(tǒng)計圖如下:請結合圖中信息解答下列問題:求出隨機抽取調查的學生人數(shù);補全分組后學生學習興趣的條形統(tǒng)計圖;分組后學生學習興趣為“中”的所占的百分比和對應扇形的圓心角.20.(6分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.21.(6分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.22.(8分)現(xiàn)有兩個紙箱,每個紙箱內各裝有4個材質、大小都相同的乒乓球,其中一個紙箱內4個小球上分別寫有1、2、3、4這4個數(shù),另一個紙箱內4個小球上分別寫有5、6、7、8這4個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數(shù)和3的倍數(shù)的概率;(2)你認為這個游戲公平嗎?為什么?若你認為不公平,請你修改得分規(guī)則,使游戲對雙方公平.23.(8分)解不等式組并在數(shù)軸上表示解集.24.(10分)某商場銷售一批名牌襯衫,平均每天可以銷售20件,每件盈利40元,為了擴大銷售,增加利潤,盡量減少庫存,商場決定采取適當?shù)慕祪r措施,經調查發(fā)現(xiàn),如果每件襯衫降價1元,商場平均每天多售出2件,若商場平均每天要盈利1200元,每件襯衫應降價多少元?25.(10分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.26.(12分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.27.(12分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.【詳解】③中含原三角形的兩角及夾邊,根據(jù)ASA公理,能夠唯一確定三角形.其它兩個不行.故選:A.【點睛】此題主要考查全等三角形的運用,熟練掌握,即可解題.2、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.3、D【解析】
先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數(shù)的大小,利用夾逼法估算出的大小是解題的關鍵.4、B【解析】
設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.5、C【解析】
解:∵,∴,即∴估計在2~3之間故選C.【點睛】本題考查估計無理數(shù)的大小.6、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.7、B【解析】
作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(xiàn)(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.8、B【解析】
首先利用平行線的性質得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進而求出∠B的度數(shù)以及得出∠F的度數(shù).【詳解】∵MF∥AD,F(xiàn)N∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵將△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故選B.【點睛】主要考查了平行線的性質以及多邊形內角和定理以及翻折變換的性質,得出∠FMN=∠BMN,∠FNM=∠MNB是解題關鍵.9、B【解析】
根據(jù)各超市降價的百分比分別計算出此商品降價后的價格,再進行比較即可得出結論.【詳解】解:降價后三家超市的售價是:甲為(1-20%)2m=0.64m,乙為(1-40%)m=0.6m,丙為(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此時顧客要購買這種商品最劃算應到的超市是乙.故選:B.【點睛】此題考查了列代數(shù)式,解題的關鍵是根據(jù)題目中的數(shù)量關系列出代數(shù)式,并對代數(shù)式比較大?。?0、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負指數(shù)科學計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).11、A【解析】
根據(jù)題意設未知數(shù),找到等量關系即可解題,見詳解.【詳解】解:設購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【點睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關系是解題關鍵.12、C【解析】
根據(jù)相反數(shù)的定義進行解答即可.【詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據(jù)相反數(shù)和為0的特點,可確定點A和點D表示互為相反數(shù)的點.故答案為C.【點睛】本題考查了相反數(shù)的定義,掌握相反數(shù)和為0是解答本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
先確定線段BC過的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結論.【詳解】如圖,連接OB、OC,以O為圓心,OC為半徑畫圓,則將弦AB繞圓心O旋轉一周,線段BC掃過的面積為圓環(huán)的面積,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,過O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案為.【點睛】此題主要考查了勾股定理,垂徑定理,一元二次方程等知識,根據(jù)旋轉的性質確定線段BC掃過的面積是解題的關鍵,是一道中等難度的題目.14、0【解析】根據(jù)同類項的特點,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.故答案為0點睛:此題主要考查了同類項,解題關鍵是會判斷同類項,注意:同類項中含有相同的字母,相同字母的指數(shù)相同.15、【解析】分析:根據(jù)分式有意義的條件是分母不為0,即可求解.詳解:由題意得:x-2≠0,即.故答案為點睛:本題考查了使函數(shù)有意義的自變量的取值范圍的確定.函數(shù)是整式型,自變量去全體實數(shù);函數(shù)是分式型,自變量是使分母不為0的實數(shù);根式型的函數(shù)的自變量去根號下的式子大于或等于0的實數(shù);當函數(shù)關系式表示實際問題時,自變量不僅要使函數(shù)關系式有意義,還要使實際問題有意義.16、【解析】
兩邊平方解答即可.【詳解】原方程可化為:(x-1)2=1-x,
解得:x1=0,x2=1,
經檢驗,x=0不是原方程的解,x=1是原方程的解
故答案為.【點睛】此題考查無理方程的解法,關鍵是把兩邊平方解答,要注意解答后一定要檢驗.17、③④⑤【解析】
根據(jù)函數(shù)圖象和二次函數(shù)的性質可以判斷題目中各個小題的結論是否成立,從而可以解答本題.【詳解】解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對稱軸在y軸右側,則與a的符號相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①錯誤,
當x=-1時,y=a-b+c<0,得b>a+c,故②錯誤,
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對稱軸x=1,
∴x=2時的函數(shù)值與x=0的函數(shù)值相等,
∴x=2時,y=4a+2b+c>0,故③正確,
∵x=-1時,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正確,
由圖象可知,x=1時,y取得最大值,此時y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正確,
故答案為:③④⑤.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關系、拋物線與x軸的交點坐標,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.18、﹣1.【解析】試題解析:分式的值為0,則:解得:故答案為三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)200人;(2)補圖見解析;(3)分組后學生學習興趣為“中”的所占的百分比為30%;對應扇形的圓心角為108°.【解析】試題分析:(1)用“極高”的人數(shù)所占的百分比,即可解答;
(2)求出“高”的人數(shù),即可補全統(tǒng)計圖;
(3)用“中”的人數(shù)調查的學生人數(shù),即可得到所占的百分比,所占的百分比即可求出對應的扇形圓心角的度數(shù).試題解析:(人).學生學習興趣為“高”的人數(shù)為:(人).補全統(tǒng)計圖如下:分組后學生學習興趣為“中”的所占的百分比為:學生學習興趣為“中”對應扇形的圓心角為:20、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點C,AD與過點C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質可得到,又因為tan∠ABC=,所以可得=,進而可得到=,設PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進而可建立關于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點睛】此題考查了和圓有關的綜合性題目,用到的知識點有:切線的性質、相似三角形的判定與性質、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質.21、(1)詳見解析;(2)【解析】
(1)根據(jù)正方形的性質和等腰直角三角形的性質以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質和四邊形周長解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,F(xiàn)D=DE,∴△CDF≌△ADE(SAS);(2)如圖,連接AC.∵四邊形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC=,∴AC=2,∴OA+OC=OA+OE=AE=,∴四邊形ABCO的周長AB+BC+OA+OC=.【點睛】本題考查了正方形的性質,全等三角形的判定與性質,等腰直角三角形的性質,難點在于(2)作輔助線構造出全等三角形.22、(1)34(2)游戲不公平,修改得分規(guī)則為:把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得7分,若得到的積是3的倍數(shù),則乙得12分【解析】試題分析:(1)列表如下:共有16種情況,且每種情況出現(xiàn)的可能性相同,其中,乘積是2的倍數(shù)的有12種,乘積是3的倍數(shù)的有7種.∴P(兩數(shù)乘積是2的倍數(shù))=P(兩數(shù)乘積是3的倍數(shù))=(2)游戲不公平,修改得分規(guī)則為:把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得7分,若得到的積是3的倍數(shù),則乙得12分考點:概率的計算點評:題目難度不大,考查基本概率的計算,屬于基礎題。本題主要是第二問有點難度,對游戲規(guī)則的確定,需要一概率為基礎。23、﹣<x≤0,不等式組的解集表示在數(shù)軸上見解析.【解析】
先求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解不等式2x+1>0,得:x>﹣,解不等式,得:x≤0,則不等式組的解集為﹣<x≤0,將不等式組的解集表示在數(shù)軸上如下:【點睛】本題考查了解一元一次不等式組,解題的關鍵是掌握“同大取大;同小取??;大小小大中間找;大大小小找不到”.24、每件襯衫應降價1元.【解析】
利用襯衣平均每天售出的件數(shù)×每件盈利=每天銷售這種襯衣利潤列出方程解答即可.【詳解】解:設每件襯衫應降價x元.根據(jù)題意,得(40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1.∵“擴大銷售量,減少庫存”,∴x1=10應舍去,∴x=1.答:每件襯衫應降價1元.【點睛】此題主要考查了一元二次方程的應用,利用基本數(shù)量關系:平均每天售出的件數(shù)×每件盈利=每天銷售的利潤是解題關鍵.25、(1)4;(2),;(3).【解析】
(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標,然后求出A、B、C的坐標,然后根據(jù)即可得出結論;(2)設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結論;(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據(jù)題意得:解得:【點睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質、相似三角形的判定及性質和勾股定理是解決此題的關鍵.26、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】
(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,②以點A為旋轉中心將正方形ABCD順時針旋轉60°,分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 區(qū)域獨家經銷合同樣本
- 小學生漫畫課件
- 農用薄膜在不同作物上的應用考核試卷
- 體育經紀人運動員經紀人職業(yè)發(fā)展與轉型路徑考核試卷
- 建筑物清潔服務中的物聯(lián)網(wǎng)技術應用考核試卷
- 期貨市場交易技能培訓與模擬交易考核試卷
- 人工智能在電力系統(tǒng)中的電網(wǎng)智能化運維考核試卷
- 有線電視傳輸網(wǎng)絡無線覆蓋與接入技術考核試卷
- 服裝生命周期管理考核試卷
- 信托與G網(wǎng)絡頻譜規(guī)劃實施策略考核試卷
- 地下車庫螺旋汽車坡道施工
- 2023年山東鋁業(yè)職業(yè)學院單招綜合素質題庫及答案解析
- 【人教版二年級下冊數(shù)學】全冊課時鞏固提升練習和單元鞏固提升練習
- GB/T 2007.1-1987散裝礦產品取樣、制樣通則手工取樣方法
- 交流課:資本主義世界市場的形成
- 城市社會學(2015)課件
- 年產2萬噸馬來酸二乙酯技改建設項目環(huán)評報告書
- 中國古代文論教程完整版課件
- 中班美工區(qū)角活動教案10篇
- SJG 103-2021 無障礙設計標準-高清現(xiàn)行
- 皇冠假日酒店智能化系統(tǒng)安裝工程施工合同范本
評論
0/150
提交評論