版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年湖北省襄樊市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.
5.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時,比較無窮小量f(x)與g(x),有
A.f(x)對于g(x)是高階的無窮小量
B.f(x)對于g(x)是低階的無窮小量
C.f(x)與g(x)為同階無窮小量,但非等價無窮小量
D.f(x)與g(x)為等價無窮小量
6.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點
7.
8.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個平面B.雙曲柱面C.橢圓柱面D.圓柱面
9.
10.
11.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
12.
13.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-214.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
15.A.A.π/4
B.π/2
C.π
D.2π
16.
17.
18.A.
B.
C.
D.
19.A.A.
B.
C.
D.
20.1954年,()提出了一個具有劃時代意義的概念——目標(biāo)管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特二、填空題(20題)21.設(shè)=3,則a=________。22.設(shè)y=x+ex,則y'______.23.24.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.25.26.27.
28.
29.
=_________.
30.
31.
32.33.
34.
35.過原點且與直線垂直的平面方程為______.
36.
37.
38.設(shè)f(x+1)=3x2+2x+1,則f(x)=_________.
39.
40.微分方程y'=0的通解為______.三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.證明:
43.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
44.45.將f(x)=e-2X展開為x的冪級數(shù).46.
47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
48.
49.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則50.51.求微分方程的通解.
52.
53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.
55.56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.57.求曲線在點(1,3)處的切線方程.58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.63.
64.
65.
66.
67.計算68.計算69.70.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.五、高等數(shù)學(xué)(0題)71.若需求函數(shù)q=12—0.5p,則P=6時的需求彈性r/(6)=_________。
六、解答題(0題)72.
參考答案
1.A
2.C
3.B
4.C
5.C
6.A
7.C
8.A
9.B
10.A
11.B本題考查的知識點為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
12.D
13.A由于
可知應(yīng)選A.
14.B
15.B
16.D
17.B
18.A
19.D
20.B解析:彼得德魯克最早提出了目標(biāo)管理的思想。
21.22.1+ex本題考查的知識點為導(dǎo)數(shù)的四則運算.
y'=(x+ex)'=x'+(ex)'=1+ex.
23.
本題考查的知識點為不定積分的換元積分法.
24.
;本題考查的知識點為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.
由于x2+y2≤a2,y>0可以表示為
0≤θ≤π,0≤r≤a,
因此
25.26.0
27.
28.
29.。
30.
31.
32.解析:
33.
本題考查的知識點為隱函數(shù)的求導(dǎo).
34.(1+x)235.2x+y-3z=0本題考查的知識點為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y-3z=0
36.y=f(0)
37.4π本題考查了二重積分的知識點。
38.
39.40.y=C1本題考查的知識點為微分方程通解的概念.
微分方程為y'=0.
dy=0.y=C.
41.
42.
43.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
44.
45.46.由一階線性微分方程通解公式有
47.由二重積分物理意義知
48.49.由等價無窮小量的定義可知
50.
51.
52.
53.
54.
則
55.
56.
列表:
說明
57.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
58.函數(shù)的定義域為
注意
59.
60.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
61.
62.
63.
64.
65.
66.
67.
68.本題考查的知識點為定積分的換元積分法.
比較典型的錯誤是利用換元計算時,一些考生忘記將積分限也隨之變化.
69.70.如圖10-2所示.本題考查的知識點為利用定積分求平面圖形的面積;利用定積分求旋轉(zhuǎn)體體積.
需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)綜合檢測試卷B卷含答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)押題練習(xí)試卷B卷附答案
- 2024年度年福建省高校教師資格證之高等教育學(xué)押題練習(xí)試卷B卷附答案
- 2024年DVD視盤機和驅(qū)動器光頭項目投資申請報告
- 廣東開放大學(xué)2024年秋《國家安全概論(S)(本專)》形成性考核作業(yè)參考答案
- 黨員使命意識提升培訓(xùn)協(xié)議2024
- 2024新建設(shè)工程成本咨詢協(xié)議范本
- 2024水電開發(fā)建設(shè)協(xié)議范本
- 2024年政府專項資金支持計劃協(xié)議
- 廠房2024年租賃化協(xié)議模板
- 小學(xué)生學(xué)習(xí)興趣和習(xí)慣培養(yǎng)課件
- 保安公司客戶滿意度調(diào)查表
- 課間安全教育主題班會課件
- 民法典 婚姻家庭編課件
- 電氣工程及其自動化專業(yè)人才需求調(diào)研報告(新)5100字
- 公務(wù)員考試行測答題卡
- 消失模工序工藝作業(yè)指導(dǎo)書
- 廣西壯族自治區(qū)北海市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)居民村民委員會
- 老年人能力評定總表(含老年人日常生活活動能力、精神狀態(tài)與社會參與能力、感知覺與溝通能力、老年綜合征罹患情況)
- 小學(xué)英語期中試卷分析(三篇)
- 系動詞公開課 完整版PPT
評論
0/150
提交評論