




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第三章空間向量與立體幾何3.2立體幾何中的向量方法第二課時空間向量與垂直關系全國名校高一數(shù)學優(yōu)質學案匯編(附詳解)1.能利用直線的方向向量和平面的法向量判定并證明空間的垂直關系.2.能用向量法證明空間線面垂直關系的有關定理.3.利用直線的方向向量與平面的法向量表示空間的垂直關系.
已知正方體ABCD-A′B′C′D′中,點M,N分別是棱BB′與對角線CA′的中點.求證:MN⊥BB′;MN⊥A′C.向量法證明線線垂直
如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1,D1B1的中點.求證:EF⊥平面B1AC.利用向量法證明線面垂直【題后反思】利用向量法證明線面垂直,有兩種方法:①證明直線的方向向量與平面的法向量平行;②證明直線的方向向量與平面內的不共線的兩個向量都垂直.2.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AB和BC的中點,試在棱B1B上找一點M,使得D1M⊥平面EFB1.
如圖所示,在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E為BB1的中點,證明:平面AEC1⊥平面AA1C1C.利用向量法證明面面垂直[思路點撥]要證明兩個平面垂直,由兩個平面垂直的條件,可證明這兩個平面的法向量垂直,轉化為求兩個平面的法向量n1,n2,證明n1·n2=0.證明:由題意得AB,BC,B1B兩兩垂直.以B為原點,BA,BC,BB1分別為x,y,z軸,建立如圖所示的空間直角坐標系.3.如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.求證:平面ADE⊥平面ABE.1.利用空間向量證明兩直線垂直的常用方法及步驟(1)基向量法①選取三個不共線的已知向量(通常是它們的模及其兩兩夾角為已知)為空間的一個基底;②把兩直線的方向向量用基底表示;③利用向量的數(shù)量積運算,計算出兩直線的方向向量的數(shù)量積為0;④由方向向量垂直得到兩直線垂直.(2)坐標法①根據(jù)已知條件和圖形特征,建立適當?shù)目臻g直角坐標系,正確地寫出各點的坐標;②根據(jù)所求出點的坐標求出兩直線方向向量的坐標;③計算兩直線方向向量的數(shù)量積為0;④由方向向量垂直得到兩直線垂直.2.坐標法證明線面垂直有兩種思路方法一:(1)建立空間直角坐標系;(2)將直線的方向向量用坐標表示;(3)找出平面內兩條相交直線,并用坐標表示它們的方向向量;(4)分別計算兩組向量的數(shù)量積,得到數(shù)量積為0.方法二:(1)建立空間直角坐標系;(2)將直線的方向向量用坐標表示;(3)求出平面的法向量;(4)判斷直線的方向向量與平面的法向量平行.提醒:使用坐標法證明時,如果平面的法向量很明顯,可以用方法二,否則常常選用方法一解決.3.坐標法證明面面垂直的兩種途徑利用空間向量證明面面垂直通??梢杂袃蓚€途徑:一是利用兩個平面垂直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村爐灶銷售合同范本
- 廚師聘用合同范例范例
- 合伙創(chuàng)業(yè)開店合同范本
- 勞務合同范本填寫文本
- 休閑廣場門面出租合同范本
- 發(fā)電機設備出租合同范本
- 儀器搬家合同范例
- 合同范例意思
- 順豐簽合同范本
- 產品定制打樣合同范本
- 建筑冷熱源素材樣本
- 胸椎小關節(jié)紊亂診斷與治療-課件
- 四川省德陽市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- Unit1Developingideaslittlewhitelies課件-高中英語外研版必修第三冊
- Unit 2 Listening and speaking 課件-高中英語人教版(2019)選擇性必修第二冊
- (參考)食品加工操作流程圖
- 員工面試登記表
- 鋼棧橋施工方案型鋼
- PySide學習教程
- 事業(yè)單位綜合基礎知識考試題庫 綜合基礎知識考試題庫.doc
- 譯林初中英語教材目錄
評論
0/150
提交評論