版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
題型五圓的相關(guān)證明與計(jì)算類型二與切線有關(guān)的證明與計(jì)算(專題訓(xùn)練)1.如圖,SKIPIF1<0內(nèi)接于SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0為SKIPIF1<0上一點(diǎn),SKIPIF1<0,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)根據(jù)SKIPIF1<0,可得SKIPIF1<0,根據(jù)對(duì)頂角相等可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,根據(jù)SKIPIF1<0,可得SKIPIF1<0,結(jié)合SKIPIF1<0,根據(jù)角度的轉(zhuǎn)化可得SKIPIF1<0,進(jìn)而即可證明SKIPIF1<0是SKIPIF1<0的切線;(2)根據(jù)SKIPIF1<0,可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,分別求得SKIPIF1<0,進(jìn)而根據(jù)勾股定理列出方程解方程可得SKIPIF1<0,進(jìn)而根據(jù)SKIPIF1<0即可求得.【詳解】(1)SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0是直徑,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的切線;(2)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍去),SKIPIF1<0.【點(diǎn)睛】本題考查了切線的判定,勾股定理解直角三角形,正切的定義,利用角度相等則正切值相等將已知條件轉(zhuǎn)化是解題的關(guān)鍵.2.如圖,SKIPIF1<0內(nèi)接于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,交SKIPIF1<0于點(diǎn)E,過點(diǎn)D作SKIPIF1<0,交SKIPIF1<0的延長(zhǎng)線于點(diǎn)F,連接SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)已知SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)由題意根據(jù)圓周角定理得出SKIPIF1<0,結(jié)合同弧或等弧所對(duì)的圓周角相等并利用經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線進(jìn)行證明即可;(2)根據(jù)題意利用相似三角形的判定即兩個(gè)角分別相等的兩個(gè)三角形相似得出SKIPIF1<0,繼而運(yùn)用相似比SKIPIF1<0即可求出SKIPIF1<0的長(zhǎng).【詳解】解:(1)證明:∵SKIPIF1<0是SKIPIF1<0的直徑∴SKIPIF1<0(直徑所對(duì)的圓周角是直角)即SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0(等邊對(duì)等角)∵SKIPIF1<0∴SKIPIF1<0(同弧或等弧所對(duì)的圓周角相等)∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0是SKIPIF1<0的直徑∴SKIPIF1<0是SKIPIF1<0的切線(經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線).(2)解:∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0(兩個(gè)角分別相等的兩個(gè)三角形相似)∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0.【點(diǎn)睛】本題主要考查圓的切線的判定、圓周角定理、相似三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握?qǐng)A周角定理和相似三角形的判定與性質(zhì)是解題的關(guān)鍵.3.如圖,AB為SKIPIF1<0的直徑,C為SKIPIF1<0上一點(diǎn),D為AB上一點(diǎn),SKIPIF1<0,過點(diǎn)A作SKIPIF1<0交CD的延長(zhǎng)線于點(diǎn)E,CE交SKIPIF1<0于點(diǎn)G,連接AC,AG,在EA的延長(zhǎng)線上取點(diǎn)F,使SKIPIF1<0.(1)求證:CF是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的半徑.【答案】(1)見解析;(2)5【分析】(1)根據(jù)題意判定SKIPIF1<0,然后結(jié)合相似三角形的性質(zhì)求得SKIPIF1<0,從而可得SKIPIF1<0,然后結(jié)合等腰三角形的性質(zhì)求得SKIPIF1<0,從而判定CF是SKIPIF1<0的切線;(2)由切線長(zhǎng)定理可得SKIPIF1<0,從而可得SKIPIF1<0,得到SKIPIF1<0,然后利用勾股定理解直角三角形可求得圓的半徑.【詳解】(1)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0AB是SKIPIF1<0的直徑,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即CF是SKIPIF1<0的切線;(2)SKIPIF1<0CF是SKIPIF1<0的切線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,設(shè)SKIPIF1<0的半徑為x,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0的半徑為5.【點(diǎn)睛】本題考查了圓周角定理、切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等,熟練掌握相關(guān)定理與性質(zhì)是解決本題的關(guān)鍵.4.如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點(diǎn)C作CE⊥AD交AD的延長(zhǎng)線于點(diǎn)E,延長(zhǎng)EC,AB交于點(diǎn)F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.【答案】(1)見解析;(2)⊙O的半徑是4.5【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得SKIPIF1<0,再根據(jù)等量代換和直角三角形的性質(zhì)可得SKIPIF1<0,由切線的判定可得結(jié)論;(2)如圖2,過點(diǎn)O作SKIPIF1<0于G,連接OC,OD,則SKIPIF1<0,先根據(jù)三個(gè)角是直角的四邊形是矩形得四邊形OGEC是矩形,設(shè)⊙O的半徑為x,根據(jù)勾股定理列方程可得結(jié)論.【詳解】(1)證明:如圖1,連接OC,∵SKIPIF1<0,∴SKIPIF1<0,∵四邊形ABCD內(nèi)接于⊙O,∴SKIPIF1<0又SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵OC是⊙O的半徑,∴CE為⊙O的切線;(2)解:如圖2,過點(diǎn)O作SKIPIF1<0于G,連接OC,OD,則SKIPIF1<0,∵SKIPIF1<0,∴四邊形OGEC是矩形,∴SKIPIF1<0,設(shè)⊙O的半徑為x,Rt△CDE中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由勾股定理得SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴⊙O的半徑是4.5.【點(diǎn)睛】本題考查的是圓的綜合,涉及到圓的切線的證明、勾股定理以及矩形的性質(zhì),熟練掌握相關(guān)性質(zhì)是解決問題的關(guān)鍵.5.如圖,SKIPIF1<0ABC內(nèi)接于⊙O,且AB=AC,其外角平分線AD與CO的延長(zhǎng)線交于點(diǎn)D.(1)求證:直線AD是⊙O的切線;(2)若AD=2SKIPIF1<0,BC=6,求圖中陰影部分面積.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)連接OA,證明OA⊥AD即可,利用角平分線的意義以及等腰三角形的性質(zhì)得以證明;(2)求出圓的半徑和陰影部分所對(duì)應(yīng)的圓心角度數(shù)即可,利用相似三角形求出半徑,再根據(jù)特殊銳角三角函數(shù)求出∠BOC.【詳解】解:(1)如圖,連接OA并延長(zhǎng)交BC于E,∵AB=AC,△ABC內(nèi)接于⊙O,∴AE所在的直線是△ABC的對(duì)稱軸,也是⊙O的對(duì)稱軸,∴∠BAE=∠CAE,又∵∠MAD=∠BAD,∠MAD+∠BAD+∠BAE+∠CAE=180°,∴∠BAD+∠BAE=SKIPIF1<0×180°=90°,即AD⊥OA,∴AD是⊙O的切線;(2)連接OB,∵∠OAD=∠OEC=90°,∠AOD=∠EOC,∴△AOD∽△EOC,∴SKIPIF1<0,由(1)可知SKIPIF1<0是SKIPIF1<0的對(duì)稱軸,SKIPIF1<0垂直平分SKIPIF1<0,SKIPIF1<0,設(shè)半徑為SKIPIF1<0,在SKIPIF1<0中,由勾股定理得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0(取正值),經(jīng)檢驗(yàn)SKIPIF1<0是原方程的解,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.【點(diǎn)睛】本題考查了切線的判定和性質(zhì)、角平分線的性質(zhì),圓周角定理,三角形外接圓與外心,扇形面積的計(jì)算,靈活運(yùn)用切線的判定方法是解題的關(guān)鍵.6.如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,過⊙O外一點(diǎn)D作SKIPIF1<0,DG交線段AC于點(diǎn)G,交AB于點(diǎn)E,交⊙O于點(diǎn)F,連接DB,CF,∠A=∠D.(1)求證:BD與⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的長(zhǎng).【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)如圖1,延長(zhǎng)SKIPIF1<0至SKIPIF1<0,證明SKIPIF1<0,即可根據(jù)切線的判定可得SKIPIF1<0與SKIPIF1<0相切;(2)如圖2,連接SKIPIF1<0,先根據(jù)圓周角定理證明SKIPIF1<0,再證明SKIPIF1<0,列比例式可得SKIPIF1<0,即SKIPIF1<0的半徑為4,根據(jù)勾股定理可得SKIPIF1<0的長(zhǎng).【詳解】(1)證明:如圖1,延長(zhǎng)SKIPIF1<0至SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴AB⊥BD,SKIPIF1<0與SKIPIF1<0相切;(2)解:如圖2,連接SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴∠AOF=∠BOF=90°,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】此題考查了相似三角形的判定與性質(zhì),切線的判定,圓周角定理,勾股定理等知識(shí),解答本題需要我們熟練掌握切線的判定,第2問關(guān)鍵是證明SKIPIF1<0.7.如圖,在Rt△ACD中,∠ACD=90°,點(diǎn)O在CD上,作⊙O,使⊙O與AD相切于點(diǎn)B,⊙O與CD交于點(diǎn)E,過點(diǎn)D作DF∥AC,交AO的延長(zhǎng)線于點(diǎn)F,且∠OAB=∠F.(1)求證:AC是⊙O的切線;(2)若OC=3,DE=2,求tan∠F的值.【答案】(1)見詳解;(2)SKIPIF1<0.【分析】(1)由題意,先證明OA是∠BAC的角平分線,然后得到BO=CO,即可得到結(jié)論成立;(2)由題意,先求出BD=4,OD=5,然后利用勾股定理求出SKIPIF1<0,SKIPIF1<0,結(jié)合直角三角形ODF,即可求出tan∠F的值.【詳解】解:(1)∵DF∥AC,∴∠CAO=∠F,∵∠OAB=∠F,∴∠CAO=∠OAB,∴OA是∠BAC的角平分線,∵AD是⊙O的切線,∴∠ABO=∠ACO=90°,∴BO=CO,又∵AC⊥OC,∴AC是⊙O的切線;(2)由題意,∵OC=3,DE=2,∴OD=5,OB=3,CD=8,∴SKIPIF1<0,由切線長(zhǎng)定理,則AB=AC,設(shè)SKIPIF1<0,在直角三角形ACD中,由勾股定理,則SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵∠OAB=∠F,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查了圓的切線的判定和性質(zhì),勾股定理,角平分線的性質(zhì),以及三角函數(shù),解題的關(guān)鍵是熟練掌握所學(xué)的知識(shí),正確的求出所需的長(zhǎng)度,從而進(jìn)行解題.8.如圖,在SKIPIF1<0中,SKIPIF1<0,以斜邊SKIPIF1<0上的中線SKIPIF1<0為直徑作SKIPIF1<0,與SKIPIF1<0交于點(diǎn)SKIPIF1<0,與SKIPIF1<0的另一個(gè)交點(diǎn)為SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0的直徑為5,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)見解析;(2)SKIPIF1<0.【解析】【分析】(1)欲證明MN為⊙O的切線,只要證明OM⊥MN.
(2)連接SKIPIF1<0,分別求出BD=5,BE=SKIPIF1<0,根據(jù)SKIPIF1<0求解即可.【詳解】(1)證明:連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0是斜邊SKIPIF1<0上的中線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線.(2)連接SKIPIF1<0,易知SKIPIF1<0,由(1)可知SKIPIF1<0,故M為SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】本題考查切線的判定和性質(zhì),等腰三角形的性質(zhì),解直角三角形等知識(shí);熟練掌握切線的判定定理是解題的關(guān)鍵.9.如圖,SKIPIF1<0是半圓SKIPIF1<0的直徑,SKIPIF1<0是半圓SKIPIF1<0上不同于SKIPIF1<0的兩點(diǎn)SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0是半圓SKIPIF1<0所任圓的切線,與SKIPIF1<0的延長(zhǎng)線相交于點(diǎn)SKIPIF1<0,SKIPIF1<0求證:SKIPIF1<0;SKIPIF1<0若SKIPIF1<0求SKIPIF1<0平分SKIPIF1<0.【答案】SKIPIF1<0證明見解析;SKIPIF1<0證明見解析.【解析】【分析】SKIPIF1<0利用SKIPIF1<0證明SKIPIF1<0利用SKIPIF1<0為直徑,證明SKIPIF1<0結(jié)合已知條件可得結(jié)論;SKIPIF1<0利用等腰三角形的性質(zhì)證明:SKIPIF1<0再證明SKIPIF1<0利用切線的性質(zhì)與直徑所對(duì)的圓周角是直角證明:SKIPIF1<0從而可得答案.【詳解】SKIPIF1<0證明:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0為直徑,SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0證明:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0為半圓SKIPIF1<0的切線,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0平分SKIPIF1<0.【點(diǎn)睛】本題考查的是圓的基本性質(zhì),弧,弦,圓心角,圓周角之間的關(guān)系,直徑所對(duì)的圓周角是直角,三角形的全等的判定,切線的性質(zhì)定理,三角形的內(nèi)角和定理,掌握以上知識(shí)是解題的關(guān)鍵.10.如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),∠CAB的平分線AD交SKIPIF1<0于點(diǎn)D,過點(diǎn)D作DE∥BC交AC的延長(zhǎng)線于點(diǎn)E.(1)求證:DE是⊙O的切線;(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,連接BD.若OF=1,BF=2,求BD的長(zhǎng)度.【答案】(1)見解析;(2)SKIPIF1<0【解析】【分析】(1)連接OD,由等腰三角形的性質(zhì)及角平分線的性質(zhì)得出∠ADO=∠DAE,從而OD∥AE,由DE∥BC得∠E=90°,由兩直線平行,同旁內(nèi)角互補(bǔ)得出∠ODE=90°,由切線的判定定理得出答案;(2)先由直徑所對(duì)的圓周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,進(jìn)而得出AF和BA的值,然后證明△DBF∽△ABD,由相似三角形的性質(zhì)得比例式,從而求得BD2的值,求算術(shù)平方根即可得出BD的值.【詳解】解:(1)連接OD,如圖:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,SKIPIF1<0SKIPIF1<0為⊙SKIPIF1<0的直徑,SKIPIF1<0∵DE∥BC,∴∠E=SKIPIF1<090°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴SKIPIF1<0,∴BD2=BF?BA=2×6=12.∴BD=SKIPIF1<0【點(diǎn)睛】本題考查的是圓的基本性質(zhì),圓周角定理,切線的判定,同時(shí)考查了相似三角形的判定與性質(zhì).(1)中判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過圓心作這條直線的垂線”,有切線時(shí),常?!坝龅角悬c(diǎn)連圓心得半徑”;(2)中能得△DBF∽△ABD是解題關(guān)鍵.11.如圖,在?SKIPIF1<0中,AB為?SKIPIF1<0的直徑,C為?SKIPIF1<0上一點(diǎn),P是SKIPIF1<0的中點(diǎn),過點(diǎn)P作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)D.(1)求證:DP是?SKIPIF1<0的切線;(2)若AC=5,SKIPIF1<0,求AP的長(zhǎng).【答案】(1)見解析;(2)AP=SKIPIF1<0.【解析】【分析】(1)根據(jù)題意連接OP,直接利用切線的定理進(jìn)行分析證明即可;(2)根據(jù)題意連接BC,交于OP于點(diǎn)G,利用三角函數(shù)和勾股定理以及矩形的性質(zhì)進(jìn)行綜合分析計(jì)算即可.【詳解】解:(1)證明:連接OP;∵OP=OA;∴∠1=∠2;又∵P為SKIPIF1<0的中點(diǎn);∴SKIPIF1<0∴∠1=∠3;∴∠3=∠2;∴OP∥DA;∵∠D=90°;∴∠OPD=90°;又∵OP為?O半徑;∴DP為?O的切線;(2)連接BC,交于OP于點(diǎn)G;∵AB是圓O的直徑;∴∠ACB為直角;∵SKIPIF1<0∴sin∠ABC=SKIPIF1<0AC=5,則AB=13,半徑為SKIPIF1<0由勾股定理的BC=SKIPIF1<0,那么CG=6又∵四邊形DCGP為矩形;∴GP=DC=6.5-2.5=4∴AD=5+4=9;在Rt△ADP中,AP=SKIPIF1<0.【點(diǎn)睛】本題考查圓的綜合問題,熟練掌握?qǐng)A的切線定理和勾股定理以及三角函數(shù)和矩形的性質(zhì)是解題的關(guān)鍵.12.如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),連接AC,CE⊥AB于點(diǎn)E,D是直徑AB延長(zhǎng)線上一點(diǎn),且∠BCE=∠BCD.(1)求證:CD是⊙O的切線;(2)若AD=8,SKIPIF1<0=SKIPIF1<0,求CD的長(zhǎng).【答案】(1)見解析;(2)4【解析】【分析】(1)連接OC,根據(jù)圓周角定理得到∠ACB=90°,根據(jù)余角的性質(zhì)得到∠A=∠ECB,求得∠A=∠BCD,根據(jù)等腰三角形的性質(zhì)得到∠A=∠ACO,等量代換得到∠ACO=∠BCD,求得∠DCO=90°,于是得到結(jié)論;(2)設(shè)BC=k,AC=2k,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)證明:連接OC,∵AB是⊙O的直徑,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)老服務(wù)業(yè)招標(biāo)文件編制與養(yǎng)老服務(wù)標(biāo)準(zhǔn)合同3篇
- 二零二五版E管材國(guó)際環(huán)境友好采購(gòu)合同3篇
- 2025年度環(huán)保型包裝材料研發(fā)與市場(chǎng)銷售合同3篇
- 2025年度綠色有機(jī)大米直供采購(gòu)合同3篇
- 2025年無證房買賣合同范本解讀與實(shí)施手冊(cè)6篇
- 二零二五年度裝配式建筑構(gòu)件安裝質(zhì)量保修合同3篇
- 現(xiàn)代文學(xué)史自考知識(shí)點(diǎn):郭沫若的作品
- 二零二四年體育場(chǎng)館高空作業(yè)腳手架勞務(wù)分包合同2篇
- 2024版煙酒零售購(gòu)銷協(xié)議樣本一
- 2025年度新型環(huán)保儲(chǔ)藏室設(shè)施買賣合同協(xié)議書3篇
- GB/T 12914-2008紙和紙板抗張強(qiáng)度的測(cè)定
- GB/T 1185-2006光學(xué)零件表面疵病
- ps6000自動(dòng)化系統(tǒng)用戶操作及問題處理培訓(xùn)
- 家庭教養(yǎng)方式問卷(含評(píng)分標(biāo)準(zhǔn))
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設(shè)計(jì)和原理
- TSG ZF001-2006 安全閥安全技術(shù)監(jiān)察規(guī)程
- 部編版二年級(jí)語文下冊(cè)《蜘蛛開店》
- 鍋爐升降平臺(tái)管理
- 200m3╱h凈化水處理站設(shè)計(jì)方案
- 個(gè)體化健康教育記錄表格模板1
評(píng)論
0/150
提交評(píng)論