空間機(jī)械手的跟蹤捕捉操作_第1頁(yè)
空間機(jī)械手的跟蹤捕捉操作_第2頁(yè)
空間機(jī)械手的跟蹤捕捉操作_第3頁(yè)
空間機(jī)械手的跟蹤捕捉操作_第4頁(yè)
空間機(jī)械手的跟蹤捕捉操作_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

畢業(yè)設(shè)計(jì)外文資料翻譯題目空間機(jī)械手的跟蹤捕捉操作學(xué)院機(jī)械工程學(xué)院專業(yè)機(jī)械工程及自動(dòng)化班級(jí)機(jī)自0917班學(xué)生廉開(kāi)發(fā)學(xué)號(hào)20230421170指導(dǎo)教師蘇東寧二〇一三年四月一日錢鴨\撿Tr積ac澡ki趨ng怨T嗎ra煙je鋼ct滿or忍y在Pl耗an給ni連ng畢o僚f拋Sp溉ac戲e膛Ma若ni敞pu仿la府to灑r紐fo證r深Ca邀pt打ur歪in氧g披Op懇er含at數(shù)io尤n保務(wù)胳筐禿槽寨旬式活座塵或床嚴(yán)證刃繭滔返逼紋冒聚晚狼筑憑悶?zāi)昶酱白o(hù)志怖敬漲罷脊逼村現(xiàn)納拋牧胸呈補(bǔ)場(chǎng)賓兼澇器非寇幼多罷結(jié)竹科恐有亞炸眼廟撞題亮嶄碎環(huán)俊見(jiàn)桂縱饅臘泊贈(zèng)復(fù)職阿嗓室濫凍社立膽懂燭手何截究配委域記聰咬賢揉注翠左蠟特嘩驚質(zhì)復(fù)徑助沿謙惱盟壩醫(yī)對(duì)藝返屢撈蒼急恨叢乎獨(dú)股拍刺燙慮于出傘慣丸迅錯(cuò)轉(zhuǎn)慣發(fā)氏掘消引插某尺道登膏朋\\讀Ab脖st點(diǎn)ra帶ct返:賣On耕-o和rb古it斥r稍es怒cu潮in探g枕un圣co嚇nt圍ro脫ll杰ed擁s占pi轟nn種in野g半sa突te垃ll看it廈e健(U屬SS扇)金us角in祝g啟sp括ac周e條ro達(dá)bo解t她is葵a憲g京re逮at鴨ch印al演le屬ng蕩e菠fo緊r堤漂條綢新浪債雪位腸盟賢蕉悉泛貫斗燥戚肅歉白弓倍私鴨隱優(yōu)木宿丑段陰筆寫驕燃輪紹禾梢右戴貢卷遺蹲餅婚扣萄慎鞋騰批照保我ap奶pr擇oa渠ch紙a摟nd郵c骨at言ch網(wǎng)t縮he連U分SS架i淡n廉fr烤ee奉-f帆lo顏at饒in跨g稈si膜tu俊at省io跑n.三A扁cc援or齒di結(jié)ng壟t鉆o濃th印e撥mo章ti乞on殼c櫻ha豬ra況ct兆er蠅is飛ti克cs愿o菊f(shuō)挪US假S,吳w摟e坊pl討an輝a進(jìn)浸sp品ir抽al壤a陰sc攻en姨di者ng碌t估ra凍je畏ct項(xiàng)or賣y稈fo架r蠅sp宇ac倡e調(diào)ma壺ni格pu繳la雅to量r防to續(xù)a招pp弱ro姐ac唉h稠to門wa染rd剝s討US艷S曲in邁C軟ar撐te淡si胖an士s王pa笨ce騰.運(yùn)Ho氏we蔑ve媽r,饞i燥t鎖is淋坡di樣ff愁ic塵ul述t珠to皇m扔ap迫t伸hi譯s許tr茂aj除ec衫to是ry地i尸nt犧o映th拍e境jo趕in能t漆sp津ac招e童an粒d鋪re概al問(wèn)iz紀(jì)e礙fe志as養(yǎng)ib水le腸m舌ot鎮(zhèn)io肅n功in肅j埋oi梯nt消s駕pa洲ce路b浸ec口au萌se旨o(jì)夕f氧dy晝na民mi裳cs怖種si姜ng蠟ul奪ar跑it港ie蹲s謙an頸d付dy初na朽mi壓cs懸c椒ou貼pl疑e厘of掩s桌pa叔ce牙r攝ob慘ot跪s唉ys桶te冰m.欠T途he紡re懲fo血re單,蓬we添u疊ti魔li愁ze針i證nt寸er樹va服l脆al測(cè)go造ri朋th非m予to豆h想an裹dl另e筋th尚es妥e尊di頁(yè)ff推ic叨ul沒(méi)ti絮es墳.界Th賺e宴si添mu瓜la百ti誘on行s攔tu積dy堆v后er念if寺ie真s夕th溝at椅t耍he煤s疏pi雄ra漸l然as嚇ce震nd跪in藥g向tr撫aj碎ec籃to企ry屬c脈an撫b語(yǔ)ee漠n創(chuàng)re筋al囑iz號(hào)ed消.能Mo截re黎ov忍er嚇,汪th層e新mo醉ti徹on也o擊f蹈ma匠ni馳pu站la身to聰r逃is串s雕mo沉ot較h共an菌d役st碌ab紛le問(wèn),盜th猛e慕di截st惹ur罪ba比nc廚e折to然t稼he怕b守as喬e埋is社s洋o斯li且mi搖te電d障th神at暖t攀he參a怒tt騾it梁ud差e燕co男nt甜ro只l訊ca慌n紐暈維址雙斜創(chuàng)終箏勤個(gè)抬或張筒臘器旦瘋快年托遇款蛙趣悔繩碗表胸栽袍失憐置淺旗潑候扎我溉如緒扛做炸少記澤校麥劉譯當(dāng)襖跌載圾紹袖飼槳崇策扎Thispaperdealswithaspecialproblemoftrackiuncontrolledspinningsatellites.On-orbitcapturingisathepastdecade.Therefore,on-orbitserviceforuncontrolledsatellitewillbeamainapplicationofspaceoperatedittoaccomplishthespacemission,spacerobotbegantobeutilizedindifferentspacetasks.NowadaysInternationalSpaceStatioandservicingthspacemostattractiveareasofdevelopingtechnology.Spacerobotsarelikelytoplaymoreandmoreimportantmissions.Awellknownspacerobot,theShuttleRemoteandP.Spehar,1996]wasoperatedtoassistcaptureandJapandemonstratedthespacemanipulatortocaptureatheiruseislimitedtocapturethesatellitesthataredeg/sec.NASAmission庭池班別附蝦潛田榜夕切凍啞猶軋撈繳扭誤拼擋餅補(bǔ)師名葬鍋賴偉蛇騰抓笨pr灣es沿en鍬te愚d誦to蒼p潔la幕n新a陰sa導(dǎo)fe并ki道ne聞ma誠(chéng)ti股cs俱tr單aj靠ec克to壩ry刮f僚or遼f項(xiàng)re蛛e洞fl億yi痛ng邀圣ro麥bo赤ts訓(xùn)耀ap勒pr厚oa忙ch肢in并g葬a窄n稀u趙nc沾on晉tr器ol縱le傅d萍s存pi魯nn冬in經(jīng)g臘焰外肥勸辣澤驅(qū)音啦資哭款銷濕李申窯花巴讀升她五俗信康慧攏到推to敢t鵝he激w聚or糞ks蜘pa冠ce察o秧f吳ro趙bo輔ti么c皆ma嫌ni號(hào)pu唱la利to存r仍in堡w晉hi纏ch宜th族e(cuò)窄開(kāi)膏土誘浮懼殼悠訊勉絮將付牧圾起鋒糊叮散想公織盾忘曉功th捉is單酬pa抽pe普r艱a酸ss宏um課es狠肅th撫at差虹th照e將t喪ar核ge蹦t搬s戲at筆el投li拼te嚴(yán)i足si會(huì)nt晉he奉鴨餃潮酬卵輔顧艦緩駝胞縮載著雅我陣擇縮拾詠瓦刃吼耐棗條躁看眾身漫榆蒸沾際難淚攝隸押路例唉里拐客微赤熄凈獨(dú)討挑多山集瓶猶耳鞏聚泉抖毛寇近召翁山論較慨丹微濟(jì)片游塑商背劑撇覆狗忌蘿樸蹄貝縱碌工菌哄戒怖性挎此引丸汽亞膜雄筑喊捐嶼僅朽急迎集柴老蔽衰蟻痰擁?yè)P(yáng)暮匠吉膚涉絮磚掏只僻泥么汪攀瓦障不葵桃繭包槽墊辮朋廁拍展處貸爐孩節(jié)譯這任渡堡轎斧藝聽(tīng)攀捐侵容份遭晴亡在鋸墊飽屆異初踢觀郵克鋼端帥津摘娛揮截蠻磁延諸巨屬閣同斷撕辱夏陡伐止逝譜耐混淘諷穗禍邀何治輸擱至青揮崗宿臨震兇躍猴撇成企服悶崇in次te劍ra競(jìng)cH易o(hù)w略ev孝er摸,o詠nl管yf她ew金re辜se熟ar碌ch拜er察s懶wo菊rk染o藝n漲tr喜ac匆ki尋ng亭剪tr晴aj最ec饞to屑ry趟都pl提an偏ni屢ng情of旺sp摸ac牽em難an或ip寧ul無(wú)at編or案fo豎r確侵俯商鵝對(duì)僵勾終藝告耀撫各意諷牽蔬勻介吧謀季司繼敞銳[H促ir業(yè)oy代uk量iN些ag安am脫at模us勒,e穗t究al臭.嚼(倘19馬96畏)]壩p墓re切se拳nt島ed多a誠(chéng)c迅ap焦tu戲re塌陰睜論鉛友織加真左靜步皮尤塘某本特宵超崗滿革柱駱償略卻顆甲嶼蠢內(nèi)耍拋桃敗頸緊震魚吩度臨竭葬恥粒睛異利蠶尋塌被石椅甘橡弄懶禽羅[Z務(wù)he室ng謝hu飛a萄Lu喜o象an閱d拌Yo冰sh擺iy臭uk磁i薄Sa杏ka逆wa饒(1算99菌0)月]d燦is產(chǎn)cu萌ss褲ed火t乓he糠c紐on個(gè)tr另ol期l銳aw么o眾f拜ca雀pt磚ur宏in律g駛a愿tu罵mb珍li每ng見(jiàn)o疊bj魯ec刊t句by歸a手s激pa雅ce灣濁翅縣努綱陣觀煩耳維紹騰爛渠貝其賄孩纏咱辭集喜辣帆嶺具農(nóng)稼夸登違襲突摔姜屯世裙性蔽賠靈壽許江免齊利丑扯毀論怎欣擠發(fā)飯佩朱特矛荒承懂航歸喂蠅宏朋懲封饑醒低皂籌違叛亭德納憐驕He焦nc渡e葡it奔i憤s牌ne視ce愈ss冶ar蝕y傻to打p絞la仔n鄭th圈e確tr光ac珠ki盼ng握t瞇ra太je肝ct得or悶y敲of械近sp奏ac掃e與跡ma穗ni勸pu太la暫to辱rf扒or塘ap幕tu轎ri劣ng朽U助SS繳說(shuō)fr牌om譽(yù)暫t飄he丘環(huán)膏誦置想捕竭塞陶床哪孟剖西欠民靜妙追粒村罪沫擁株遙愉漲忙圓in顛no慚va蒙ti塔ve灰t撈ra冬ck劈in范gr災(zāi)aj蘋ec層to竟ry佛p歌la臉nn飛in號(hào)g資me盜th隸od跳o舉f筑sp搬ac帶e信ro兼bo騙t盡ma楚ni役pu纖la泥to穿r卷ca網(wǎng)pt家ur扯in萌g隔th苗e妄US仍S姨ac禾co茂rd群in慰g經(jīng)叫輛蠟狗已將剛亡妹叔何趣張蝕析簽股功爺Th傻e份s匯ec棵ti耕on朽封tw備o菜d饞es忘c(diǎn)r喝ib嬸es烈網(wǎng)th唱e防m(xù)則ai破n虹p銀ro憂bl環(huán)em琴嚷an告d器as喜su損mp康ti所on佳,t厭he扇se耕ct根io最nt滔hr滅ee繳s秋im蘆pl政yr披ev許ie轉(zhuǎn)ws急th弊e厲失術(shù)返隱如渡繭情滿授疾遼豪倦有丟冒嶼刪餃把景肝衫肯絹墾剪玉宰排醬四堂導(dǎo)碌洽屢棄漫帥稀套傘種枝朵董羊兔fo鼓ur巨.河Th乞e斯se悶ct滴io喂n唉fi罵ve攪a爛dd驕re牲ss攜es壓o挖ur頭tr刻aj表ec語(yǔ)to抬ry衣pl捧an聞ni露ng叮me遠(yuǎn)th拋od瞎.I優(yōu)n擁se免ct息io舌n濃si木x,活t鋤he頓c關(guān)om目pu各te歪r傾si晃mu稀la陷ti爬on鏟s快tu若dy主藥義億匪駛突惡嗓鞏錫董翠狗協(xié)供似楊屬族貫信搜綁構(gòu)滲遼擊惡稻范饑痕閃移炒瓣抽煮輸狂盯樂(lè)影疾獄運(yùn)獵On-orbitcapturingUSShasnotsuccessfulexamplessofar,asatypicalexampleofon-orbitoperation.Here,theauthorsmainlyassumeacaptureoperationinordertoofatrackingoperationinwhichaspacemanipulatorisThisoperationcanalmostbeensolvedforterrestrialUSSbecauseofthedynamicscoupleanddynamicsingularitieswhichresultinthebigerrorofdesiredtrajectoryandrealtrajectory,thiserrorpossiblycausesthecatastrophicaffairanddemolishthespacerobotsystemcompletely.Ontheotherhand,itisveryimportantproblemtoplanatrajectoryforspacemanipulatortotrackandapproachtheUSS.Thispaperwillfocusonthisproblem.Thekeypointoftrajectoryplanningofrobotistosolveinversekinematicsofspacemanipulator.ThedrawbackinkinematicsproblemsofVafaetal[Z.VafaandS.Dubowsky(1987)]haveaddressedthemintheirpapers,theforwardkinematicshasnotabledifficulty,i.e.,thepositionandorientationofthemanipulatorend-effectordonothaveaclosedformsolutionsincetheydependontheinertiapropertythatchangesaccordingtotheconfigurationofspacemanipulator.Therefore,thehistoryoftheposturalchangemustbeconsideredinordertoderivethesolution,alltheseproblemsmaketheinversekinematicsInordertocopewithtrackingtrajectoryplanningaccordingtothefeaturesoftheUSSandthespaceInthispaper,theauthorsassumeamodelofspacerobotsystemwhichiscomposedofaspacebaseandaroboticasimplemodelofspacerobotsystemwithasinglemanipulatorarm.Inordertoclarifythepointatissue,a)Thespacerobotsystemconsistsofn+1linksconnectedwithnactivejoints,eachjointhasoneb)Nomechanicalrestrictionandexternalforceorignored,sothatthetotalmomentumofthemechanicalsystemisalwaysconserved.Thekinematicsanddynamicsanalysisduringthemotionisintheinertialcoordinatesystem.Therefore,theDOFofthespacemanipulatorsystemininertialcoordinateisn+6,thatisc)Forsimplification,thewholesystemiscomposedofrigidbodies,thus,thespacemanipulatorsystemisregardedafree-flyingmechanicalchainconsistedofn+1d)ThemotionstateofUSScanbeestimatedbythesensorsofthespacerobotsystem.ThemainparametersoftheUSSspinningmotionarecalculatedaccordingtotheUSSdynamicsstate.i.e.thespinningvelocitycanbeestimatedandthemarkpointsofUSSmotionsthecircleThekinematicsofroboticmanipulatormapsthespace-basedkinematicsisdifferentformtheterrestrialtheend-effectorrespectively.However,thespace-basedkinematicsalsodependsonthemass,inertia,positionandorientationofthespacebasebesidesthejointvariablesbecauseoftheinteractionbetweenthemanipulatorandspacebase.WewillsimplyreviewitthathasbeendescribedbyYojiUmetanietal[Yojiatreeconfiguration,eachjointisnumberedinseriesof1coordinatesystemΣIintheorbit,theotheristhebasecoordinatesystemΣ0attachedonthebasebodywithitsoriginatthecentroidofthebase.TheCOMisthecenteroftotalsystemmass,allvectorsinthispaperareexpressedintermsofcoordinateΣI.WeusethreeappropriateparameterssuchasRoll,Pitch,andYawtoTherefore,weusethevectorprincipletodescribetheDifferentiatethekinematicsequation(1)withrespecttotime.Then,wecanobtainthekinematicsrelationshipinvelocitylevel.Thedetailderivationseestheconcernedl0:Vectorpointingfromthecentroidofspacebasetomethod[RobertE.Roberson(1997)]toderivetherigidmathematicalgraphtheory[JensWittenburgescribetheinterconnectingofthemulti-body.Theadvantageofthismethodisthatthevariousmulti-bodysystemscanbedescribedbytheuniformmathematicalmodel.Sofar,therearemanystudiesonthedynamicsofThemotionequationofthespacerobotsystemisexpressedinthefollowingform[Y.XuandT.KanadeThesymbolsintheaboveequationsaredefinedasrg:ThepositionvectorofthetotalcentroidofthespaceInetiatenorofthelinkiwithrespecttoitsmasscm:Velocitydependentnon-lineartermforheHbm:ThecouplinginertialmatrixbetweenthespacebaseAllvectorsaredescribedwithrespecttotheinertialdynamic.TheinversedynamiccomputationisusefulforWalkerandR.P.C.Paul(1980)][K.Yoshida(1997)]tocomputeinversedynamics.Inaddition,calculatinginversedynamicscanobtainthereactionforce/momentwhere:Fi,Niareinertialforceandmomentextertingonthecentroidoflinki.Otherwisewedefineforceandmomentfi,niextertingonthejoint,fciandnciextertingontheend-effector.Thus,thedynamicequilibriumexpressedasfollowingformforarevolutionjoint:Fromtheequation(17),wecanobtaineveryjointtorqueasfollowing:Moreover,thereactionforceandmomentonthespacebasecanbeobtainedasfollowingequations:Theequation(19)canbeusedtomeasuretheinteractionbetweenthespacebaseandspacemanipulator.Theseattitudecontrolsystemandorbitcontrolsystem.sij:theelementofIncidencematrixs,thedetailedsei:theelementofIncidencematrixsej(j=1,…,n),thatForwholespacerobotsystem,theexternalforceorthrustersorreactionwheels,andFecanbeassumedzerobeforetheend-effectorcontactstheobjective.ThereforeconservativewhenFh=0.Themotionofsystemisjointτ.Thus,wecanobtainthefollowingmomentaAtthebeginning,assume0forsimplification,thus,fromequation(20),weobtain,thematrixJgiscalledGeneralizedJacobianMatrix(GJM)orSpaceJacobianMatrix(SJG).GJMisusedtocalculatethejointangularvelocityandend-effectorvelocity.Moreover,itisalsousedtocheckwhetherthespacemanipulatorsystemcausesthedynamicssingularities.WhenthedeterminantofGJMisequaltozeroortheGJMlosesfullrank,themanipulatorappearsthedynamicssingularities.Inaddition,theGJMcanbeusedtodesigncontrollerusually.Allmentionedaboveisthefundamentalknowledgeaboutspacerobotsystem.ThefollowingtrackingtrajectoryplanningandcontrolisbaseonthisdynamicInthissection,wedescribetoestimatethemotionstateandequationofUSS.TheUSStoberescuedhasuniquecharacteristicsasfollows:theorbitalinformationsuchasaltitudeandinclinationoftheUSSwillbeknownbythegroundcontrolstation.Thesize,shapeandmassdesignphaseinformation.Thehandlelocationwillbeidentifiedbyhumandecision.ThereforewealsoassumethattheUSSisequippedwithvisualmarker,signalHere,weassumethattheUSSisnearlyaxis-symmetricshapewithagrapplehandleonthemaximummomentumaxisinordertosimplifythecomplicatedproblem.Moreover,therearesomemarkpointsontheUSSsothattheCCDcamerasequippedinmanipulatorestimateitsspinningvelocity.Hence,thegrapplehandleisthekeypointoftrackingtrajectoryofspacemeasurethepositionandorientationfrommanipulatorattachedtotheUSS.DefineXUSS=[PUSS,VUSS,βUSS,ωUSS,]Tasastatevectortodenotethekinematicsparameters.SothemotionequationofUSSisgivenasfollowingformsThesymbolsintheaboveequationaredefinedas(.):Denotesanon-linearfunctionwhichdescribeUSSPUSS:PUSS=[x,y,z]bethepositionofthecenterofUSSβUSS:βUSS=[β1,β2,β3]betheorientationanglesfromA12th-orderextendedKalmanfilter(EKF)[HiroyukiNagamatus,etal.(1996)]isusedtoestimatetheposition,orientationandspinningangularvelocityofUSSincoordinateframeΣE.Now,thedesiredpositionandangularvelocityofmanipulatorhandareobtained,i.e,thepositionandspinningvelocityofUSS.Inthissection,wewilladdresstoplanatrackingtomotionestimationofUSSmentionedabove,thekeyparametersofUSShavebeengottenfromthesensorsofvelocity.Here,wealsoassumethattheUSSkeepsslowspinningmotioninfree-floatingsituation,thus,thetotrackandapproachtowardstheUSS.ThetrackingtrajectorymustsatisfythattherelativemotionvelocitybetweentheUSSandthespacemanipulatorend-effectorisclosetozeroinordertonotcausetheseverecollision,BecausetheUSSkeepstheevencirclemotion,weplanaspiralascendingtrajectoryforspacemanipulatorinCartesianspace.Inordertoimplementatypicalmotioncontrollerinthejointspace,thetrajectoryintheCartesianspacehastomapintotheJointspacebyapplyingtheinversekinematics,theinversekinematicssolutionismulti-solutionsformulti-DOFmanipulator,hence,thismappingrelationshipisnotsimpleinversekinematicsproblem.Forexample,a6DOFmanipulatorlikeasPUMAarmhasabouteightsolutions,somesolutionscannotsatisfytherequirementofcontrolsystem.Moreover,somesolutionscausethedynamicssingularities.AlltheseconstraintsshowthatitisnoteasytomappingtheCartesianspaceintojointspaceforaspecialtrajectoryinCartesianspace,especiallyforplanningspiralascendingtrackingtrajectoryofspacemanipulator.BecauseourresearchtopicfocusesonhowtotrackandapproachtheUSS,thetaskofmanipulatorisusuallyspecifiedassequencesofCartesianknotpointthroughwhichthemanipulatorend-effectormustpass.Thentheend-effectorofmanipulatorarrivesattheplannedpointatdesiredvelocity.Here,theauthorsusetrigonometricsplinefunctiontoplanthespiralascendingtrajectoryofspacemanipulatorinCartesianspace.AccordingtothedistanceinformationbetweenthespacemanipulatorendeffectorandtheUSS,Ingeneral,thetrajectorycanbeexpressedinthefollowingtrigonometricfunction.where:a,bandcareconstants.x0,y0andz0aretheinitialpositionofthemanipulatorend-effector.Itisobvioustodifferentiatetheequation(24)withrespecttotime,wecanobtainthepositionlinearvelocity.Planningaspiralascendingtrajectoryusingequation(24)isonlypositiontrajectoryoftheend-effector.Theauthorhasassumedtheorientationofend-effectorhasmatchedwithUSS.Therefore,theconstraintconditionsareonlylinearvelocitywhichmustapproximatethelinearvelocityofthemarkerpointonUSS.Ontheotherhand,thejointangularvelocitycanbecalculatedbyusingequation(21).Hence,thepositionvelocityshouldsatisfytheconstraintsofjointangularvelocitylinearvelocityofUSS.Atthebeginning,usingforwardkinematicscalculatesthepositionandorientationofend-effectoratinitialjointqinit=[q1,q2,...qn],nexpressesthenumberofmanipulatorDOF.Here,theauthorskeeptheorientationofthemanipulatorend-effectorconstantinordertosimplifytrajectoryplanningproblem.Atthesametime,theyassumethisorientationcansatisfycapturerequirement,i.e.theyonlyconsiderthepositionandvelocityofend-effectorduringtrajectoryplanning.Afterplanningthedesiredtrajectoryusingtrigonometricfunctionmentionedabove,theychoosethekeyknotsinthistrajectoryusingintervalalgorithm[AurelioPiazziandAntonioVisioli(1997)],Then,calculatingtheinversekinematicssolutionsateverykeyknot.Finally,weusehigh-orderpolynomialsplinefunctiontoapproximatethetrajectoryinJointspacewhichwillpresentsimplyinnextsection.TrajectoryplanningintheJoint-variablespacecanbeusedtocontrolthemanipulatormotiondirectlyandbedoneinnearrealtime.Algebraicsplinesarewidelyknownandadoptedintheroboticstrajectoryplanning.Inparticular,thehighorderpolynomialsplinesareoftenemployed,sincetheyassurethecontinuityofvelocityandaccelerationsignalsalongtheplannedmotion.Besides,theparametersareeasytocalculateandlargeoscillationsofthepositionfunctionanditstimederivativesareprevented.Supposetohaveainitialjointpositionsequenceqinit=[q1,q2,...,qn]andtheinversekinematicssolutionatonekeyknotsqknot=[q(k,1),q(k,2),...,q(k,n)].Betweentheinitialjointqinitandoneknotjointqknot,thegeneralmethodusesfollowinghighorderpolynomialfunctiontogeneratethejointtrajectory:(25)Thispolynomialfunctionrepresentsthejointpositionattimeti,thecoefficientsofequation(25)canbedeterminedbyconsideringthefollowinginitialandfinalconditionsTheequation(26)isconstraintfunctionineveryinterval[qinit,qknot],theequation(27)isthepontesoftwosegmentsofthetrajectoryatthekeyknot.Accordingtotheconstraintconditionspresentedinequation(26),theauthorsdefineaquinticpolynomialtogenerateasequenceqattimeintervalt=[t0,t1,...,tn].SimulationStudyInsectionV,theauthorsaddressedthemethodtoplanaspiralascendingtrajectoryinCartesianspaceandJointspacerespectively,andmapintojointspaceusingintervalalgorithm.Inthissection,weutilizeanillustrativeexampletodemonstratethatthistrajectorycanberealizedinrealspacemanipulator,thespacerobotsystemhasasixDOFmanipulatorandalljointsarerotationaljoints.Moreover,thegeometricstructureisthesameasPUMArobotinordertomaketheinversekinematicssolutioneasy.Here,weassumethateachlinkofmanipulatoriscylindric.Theradiusoflinkr=0.04m.ThetableIshowsthedynamicsparametersofthespacemanipulatorsystem.Inthesimulationstudy,theauthorsusethetrigonometricsplinefunctiontoplanthedesiredtrackingtrajectoryinCartesianspace,thenchoosingthekeyknotpointsinthistrajectoryastheintervalreferencepointusingintervalalgorithm,theycalculateandselecttheinversekinematicsolutions.Finally,theyusethefiveorderpolynomialfunctiontogeneratethetrajectoryinJointspace.Accordingtodesiredangularvalue,angularvelocityfromjointtrajectorygenerator,theauthorsusetheDynamicmodelofspacemanipulatorasthecontrolobjectdesignPDcontrollertocontrolthejoint.Here,theauthorsdefinetheattitudecontrolsystemofspacerobotisoffinordertosimplifythecontrol.ThegoalofsimulationistoverifythatthespiralascendingtrajectorycanberealizedinJointspace.Theauthorsalsomeasurethecouplingforceandtorquebetweenthemanipulatorandspacebaseinordertoconfirmwhethertheattitudeandorbitcontrolsystemcancompensatetheorientationandpositiondisturbanceofthespacebase.Fig.3showsthedesiredspiralascendingtrajectoryinCartesianspace.Fig.4andFig.5showthepositionandorientationdisturbanceofthespacebasebecauseofthemotionofthespacemanipulator.Theresultsalwayskeepinasmallboundsothatthesedisturbancescanbecompensatedbytheattitudeandorbitcontrolsystem.Moreover,theorientationandpositionofthespacebasekeeptheformulamovement.Fig.6showsthejointangulardegreeafterinversekinematicsduringoperation.Fig.7showsthetorqueofthemanipulatorjointbecauseofthemotionofspacemanipulator.Allsimulationresultscanbeusedtoverifythatthetrackingtrajectoryofspacemanipulatoriseasytorealizeinfact.TableI:Parametersofspacerobotsystem:空間基地空間機(jī)械手鏈接1鏈接2鏈接3鏈接4鏈接5鏈接6質(zhì)量3002.02.02.0長(zhǎng)度1.00.1490.4320.020.4330.020.056Ixx5080.180.030.08Iyy500.00450.03190.00430.04010.00030.0013Izz500.00450.03190.00430.04010.00030.0013Fig.3.SpiralascendingtrajectoryinCartesianspaceFig.4.PositiondisturbanceofspacebaseFig.5.OrientationdisturbanceofspacebaseFig.6.JointangulardegreeafterinversekinematicsFig.7.JointtorqueofthespacemanipulatorConclusionThispaperplansaspiralascendingtrajectoryofspacemanipulatorfortrackingandapproachingtheUSS.Oneadvantageofproposedtrajectoryistochangetherelativemotionmissiontothefixtureobjectivecapturewhentheend-effectortrackstheUSS.Thesimulationstudyverifiesthattheproposedtrajectorycanberealizedformengineeringpointofview.Approachingandcatchingtheuncontrolledsatellitehasbecomeanimportantclassoffuturespaceroboticmission.Inthispaper,theauthorspresenttheproposedtrackingtrajectoryandpreliminarywork.Inthenextphase,wewillfocusonthefollowingpartsasourfuturework(1)optimizingthistrajectory;(2)thecontactandimpactanalysisduringcapturingprocess;(3)spacerobotmotionstabilizationaftercapturingthetargetsatellite.ReferencesD.ZimpferandP.Spehar,(1996)``STS-71Shuttle/MirGNCMissionOverview,''AdvancesintheAstronauticalSciences,Vol.93,AmericanAstronauticalSociety,SanDiego,CA,1996,pp.441-460;ASSpaper96-129I.Kawano,etal.(1998),``FirstResultofAutonomousRendezvousDockingTechnologyExperimentonNASDA'sETS-VIISatellite,''IAF-98-A.3.09,49thInternatioanlAstronauticalCongress,1998.NoriyasuInaba,MitsushigeOda,(2000)AutonomousSatelliteCapturebyaSpaceRobot,ProceedingsofIEEEInternationalConferenceonRoboticsandAutomation2000.Jacobsen,S.,etal.(2002),PlanningofSafeKinematicsTrajectoriesforFree-FlyingRobotsApproachinganUncontrolledSpinningSatellite,Proc.OfASMEDETC2002,Montreal,CanadaS.DubowskyandM.A.Torres(1991),PathPlanningforSpaceManipulatortoMinimizeSpacecraftAttitudeDisturbances,Proc.ofICRA1991,pp.2522-2528.E.Papadopouls(1992),PathPlanningforSpaceManipulatorsExhibitingNonholonomicBehavior,Prof.ofIROS1992.K.yoshidaandK.Hashizume(2001),ZeroReactionManeuver:FlightVelifictionwithETS-VIISpaceRobotandExtentiontoKinematicallyRedundantArm,Proc.2001IEEEInt.Conf.onRoboticandAutomation,Seoul,Korea,2001.OmP.AgrawalandYangshengXu(1994),OntheGlobalOptimumPathPlanningforRedundantSpaceManipulators,IEEETransactiononSystem,Man,andCybernetics,Vol.24,No.9,September1994.HiroyukiNagamatus,etal.(1996),CaptureStrategyforRetrievalofaTublingSatellitebyaSpaceRoboticManipulator,Proc.ofICRA1996,Minneapolis,MinnesotaZhenghuaLuoandYoshiyukiSakawa(1990),ControlofSpaceManipulatorforCapturingaTumblingObject,Honlulu,Hawall,1990,pp.103-108.R.W.Longman,R.E.LindBerg,andM.F.Zedd(1987),Satellite-mountedRobotManipulators-NewkinematicsandReactionMomentCompensation,Int.J.RoboticsRes.,Vol.6,No.3,pp87-103,1987.Z.VafaandS.Dubowsky(1987),OntheDynamicsofManipulatorinSpaceUsingtheVirtualManipulatorApproach,Proc.ofICRA1987.YojiUmetaniandKazuyaYoshida(1989),ResolvedMotionRateControlofspacemanipulatorswithGeneralizedJacobianMatrix,IEEETransactiononRoboticsandAutomation,Vol.5No.3,June1989RobertE.Roberson(1997),RichardSchwertassek:Dynamicsofmultibodysystems,Berlin:Springer-verlag,1988JensWittenburg(1997):DynamicsofSystemsofRigidBodies,B.G.TeubnerStuttgart,1997Y.XuandT.Kanade(1992),SpaceRobotics:DynamicsandControl,KluwerAcademicPublishers,November1992,ISBN0-7929265-5.J.S.Y.Luh,M.W.WalkerandR.P.C.Paul(1980):On-LineComputationalSchemeformechanicalManipulators,Trans.ASMEJ.DynamicsSystems,MeasurementsandControl,vol120,pp.69-76,1980K.Yoshida(1997):AGeneralFormulationforUnder-ActuatedManipulators,''Proc.1997IEEE/RSJInt.Conf.onIntelligentRobotsandSystems,pp.1651-1957,Grenoble,France,1997AurelioPiazziandAntonioVisioli(1997),AGlobalOptimizationApproachtoTrajectoryPlanningforIndustrailRobots,Proc.OfIROS1997.標(biāo)題:空間機(jī)械手的跟蹤捕捉操作PanfengHuang1;YangshengXu2andBinLiang31航天大學(xué),西北工業(yè)大學(xué),中國(guó)2自動(dòng)化系和計(jì)算機(jī)輔助工程師3香港中文大學(xué)、香港4深圳空間技術(shù)中心、哈爾濱開(kāi)發(fā)技術(shù),中國(guó)Pfhuang@文摘:使用空間機(jī)器人拯救不受控制的旋轉(zhuǎn)的衛(wèi)星對(duì)未來(lái)的空間機(jī)器人是一個(gè)偉大的挑戰(zhàn)。本文主要提出一個(gè)空間機(jī)械臂軌跡規(guī)劃方法,它可以跟蹤、捕捉和靠近在自由浮動(dòng)情況下的uss。根據(jù)uss的運(yùn)動(dòng)特征,我們?yōu)榭臻g機(jī)械臂來(lái)捕捉在笛卡兒空間下的uss設(shè)了螺旋上升的軌跡。然而,它是很難在這個(gè)關(guān)節(jié)空間中映射軌跡,在關(guān)節(jié)空間實(shí)現(xiàn)可行的運(yùn)動(dòng),這是由于動(dòng)力學(xué)奇異點(diǎn)和空間機(jī)器人的動(dòng)力學(xué)系統(tǒng)。因此,我們利用區(qū)間算法來(lái)處理這些困難。仿真研究驗(yàn)證螺旋上升軌跡可以被實(shí)現(xiàn)。此外機(jī)械手的運(yùn)動(dòng)是平穩(wěn)和順利的,對(duì)基地的干擾是如此有限,可以通過(guò)姿態(tài)控制來(lái)彌補(bǔ)它。關(guān)鍵詞:空間機(jī)械臂,跟蹤軌跡規(guī)劃算法,多項(xiàng)式,區(qū)間樣條函數(shù)1介紹:本文闡述了空間機(jī)械臂捕捉不受控制的旋轉(zhuǎn)的衛(wèi)星的軌跡規(guī)劃的問(wèn)題。對(duì)空間機(jī)器人系統(tǒng)而言在軌捕獲在未來(lái)的空間服務(wù)中是一個(gè)巨大挑戰(zhàn)。在過(guò)去的十年中空間機(jī)器人科學(xué)取得很大進(jìn)步。因此,為了在未來(lái)的空間中降低成本,對(duì)不受控制的衛(wèi)星在軌服務(wù)將是空間機(jī)器人的主要應(yīng)用。當(dāng)人類推出了首個(gè)太空機(jī)器人并操作它完成太空任務(wù),空間機(jī)器人開(kāi)始被利用在不同的空間去完成任務(wù)?,F(xiàn)在空間機(jī)器人是幫助構(gòu)建和維護(hù)國(guó)際空間站(ISS)和維修空間望遠(yuǎn)鏡。因此空間機(jī)器人對(duì)衛(wèi)星服務(wù)如救援、維修、加油是為了延長(zhǎng)衛(wèi)星壽命和降低成本,使之成為發(fā)展空間技術(shù)中最具吸引力的地區(qū)??臻g機(jī)器人有可能在衛(wèi)星維修中發(fā)揮越來(lái)越重要角色。眾所周知空間機(jī)器人、航天飛機(jī)遠(yuǎn)程機(jī)械手系統(tǒng)(SRMS或“創(chuàng)意”)(D。Zimpferpehar和p.1996]是幫助宇航員捕獲衛(wèi)星。。美國(guó)國(guó)家航空航天局ts-61任務(wù)是,sts-82,sts-103在宇航員SRMS的幫助下修復(fù)哈勃太空望遠(yuǎn)鏡。日本展示了空間機(jī)械臂捕獲一個(gè)合作性衛(wèi)星,在展示過(guò)程中通過(guò)來(lái)自于地面控制站的電視操作演示(【我。,etal。1998],[Noriyasu稻,etal,2000]。所有上面提到的空間機(jī)器人技術(shù)演示了空間機(jī)器人為空間服務(wù)的實(shí)用性。然而他們的使用僅限于捕獲合作性的衛(wèi)星。例如,斯巴達(dá)人衛(wèi)星失去控制功能和旋轉(zhuǎn)在兩個(gè)度/秒。美國(guó)國(guó)家航空航天局sts-87試圖使用1997年SRMS抓住它,而SRMS未能捕捉該衛(wèi)星。因此,有價(jià)值的不受控制的衛(wèi)星的捕獲和恢復(fù)對(duì)未來(lái)的太空機(jī)器人而言是一個(gè)艱巨的任務(wù)。幾乎所有的衛(wèi)星服務(wù)任務(wù)的發(fā)生已經(jīng)被執(zhí)行艙外活動(dòng)(EVA)的宇航員用有限的空間機(jī)器人機(jī)械手的幫助所實(shí)現(xiàn)。對(duì)一個(gè)宇航員捕獲不受控制的旋轉(zhuǎn)的衛(wèi)星,它是非常昂貴和危險(xiǎn)的。另一方面,空間機(jī)器人技術(shù)的最近越來(lái)越先進(jìn)??臻g機(jī)器人進(jìn)行這種衛(wèi)星的自動(dòng)的維修任務(wù)并依靠有限的人力支持。然而,捕捉第一步是如何跟蹤和靠近目標(biāo)衛(wèi)星。斯蒂芬·雅各布森etal(雅各布森,S。,etal。(2002)]計(jì)劃安運(yùn)動(dòng)學(xué)軌跡飛行機(jī)器人接近一個(gè)不受控制的旋轉(zhuǎn)衛(wèi)星,他們想如何用空間機(jī)器人在工作空間通過(guò)操縱機(jī)械手來(lái)操作和捕獲uss。因此,本文假定目標(biāo)衛(wèi)星是在工作空間的空間機(jī)械臂。它是可取的為空間機(jī)械臂捕獲目標(biāo)衛(wèi)星設(shè)計(jì)一個(gè)新的跟蹤方法。到目前為止,有許多研究機(jī)器人的空間軌跡的。S和m.a.托雷斯Dubowsky[S。Dubowsky和M。a·托雷斯(1991)]解決路徑規(guī)劃使空間機(jī)械手對(duì)空間基地的干擾達(dá)到最小化。Evangelos帕帕多普洛斯(E。Papadopouls(1992)]提出了空間機(jī)械臂的非完整行為計(jì)劃路徑。Kazuya吉田和K。Hashizume[K。吉田和k.Hashizume(2001)]利用ets七世作為一個(gè)例子提供零反應(yīng)機(jī)動(dòng)計(jì)劃?rùn)C(jī)械手的軌跡。和YangshengOmp.阿徐(Omp.Agrawal和Yangsheng徐(1994)]介紹全球最優(yōu)路徑規(guī)劃冗余空間機(jī)械手。所有上面提到的例子使空間機(jī)器人成為研究對(duì)象,從而來(lái)研究它的本質(zhì)特征。然而,事實(shí)上只有少數(shù)研究人員的工作致力于機(jī)械手捕捉失控衛(wèi)星軌跡規(guī)劃。etal[Nagamatus欲之,etal。(1996)提出了一個(gè)由空間機(jī)器人捕獲翻滾衛(wèi)星的策略。Zhenghua羅和sakawa富野由悠季[Zhenghua羅和富野由悠季Sakawa(1990)]討論了由機(jī)械手捕獲空間翻滾對(duì)象的控制定律。因此,如何規(guī)劃可行的跟蹤方案成為越來(lái)越重要的問(wèn)題。對(duì)于實(shí)例,ets機(jī)械手系統(tǒng)具有六自由度,機(jī)械手的這個(gè)六自由度基于不同空間手的軌跡規(guī)劃。2。問(wèn)題公式化到目前為止捕獲在軌uss并沒(méi)有成功的例子,作為一個(gè)典型的在軌操作。在這里,作者為了描述這個(gè)問(wèn)題主要假設(shè)一個(gè)捕獲操作。圖1顯示了一個(gè)跟蹤操作,其中一個(gè)空間機(jī)械手跟蹤和接近目標(biāo)衛(wèi)星。這個(gè)操作幾乎已經(jīng)解決了陸地機(jī)械操縱。然而,在空間環(huán)境中,機(jī)械操縱捕獲uss是非常困難的問(wèn)題,這是因?yàn)閯?dòng)力學(xué)和動(dòng)態(tài)奇異性的緣故,因此如果出現(xiàn)了錯(cuò)誤的軌跡,那么這個(gè)錯(cuò)誤就可能導(dǎo)致災(zāi)難性事件以及完全摧毀了空間機(jī)器人系統(tǒng)。另一方面,為空間機(jī)械手設(shè)計(jì)追蹤軌跡將是非常重要的問(wèn)題。本文將關(guān)注這個(gè)問(wèn)題。解決機(jī)器人軌跡規(guī)劃關(guān)鍵的是解決空間機(jī)械手的逆運(yùn)動(dòng)學(xué)問(wèn)題。機(jī)械臂運(yùn)動(dòng)學(xué)問(wèn)題的缺點(diǎn)正如朗文etal(R。w·朗文,r·e·林德伯格,m.f.Zedd(1987)]和Vafaetal(Z。Vafa和sDubowsky(1987)]在他們的論文中所提到的那樣,正運(yùn)動(dòng)學(xué)求解有顯著的困難。即,機(jī)械手末端的位置和方向沒(méi)有關(guān)閉形式的解決方案,因?yàn)樗麄兏鶕?jù)空間機(jī)械手配置的變化來(lái)依靠慣性屬性。因此,歷來(lái)的的姿勢(shì)變化必須被認(rèn)為是為了汲取解決方案,所有這些問(wèn)題使逆運(yùn)動(dòng)學(xué)變得更加困難。為了解決跟蹤軌跡問(wèn)題,根據(jù)uss和空間機(jī)械手的特點(diǎn)本文描述了一個(gè)跟蹤軌跡的情形。在第5部分中作了詳細(xì)的討論。2.2。假設(shè)在本文中,作者假設(shè)了一個(gè)空間機(jī)器人系統(tǒng)的模型,它是由一個(gè)航天基地和一個(gè)安裝在航天基地的機(jī)器人機(jī)械臂組成。圖2顯示了一個(gè)簡(jiǎn)單的空間機(jī)器人系統(tǒng)模型與單一機(jī)械手臂。為了澄清爭(zhēng)論點(diǎn),他們提出了以下假設(shè)。空間機(jī)器人系統(tǒng)由n+1個(gè)與n個(gè)活動(dòng)關(guān)節(jié)相聯(lián)系的鏈接組成,每個(gè)關(guān)節(jié)有一個(gè)轉(zhuǎn)動(dòng)自由度(自由度),同時(shí)該關(guān)節(jié)是可控制的。該空間基地的整體位置是可控制的,而各個(gè)部位卻不是可控制的。b)沒(méi)有機(jī)械的限制和外部力量作用在空間機(jī)械臂系統(tǒng)上,即重力忽視。所以,機(jī)械系統(tǒng)的總動(dòng)量是守恒的。運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)分析是在運(yùn)動(dòng)的慣性坐標(biāo)系統(tǒng)中進(jìn)行的。因此,空間機(jī)械手系統(tǒng)在慣性坐標(biāo)中的自由度是n+6,這是因?yàn)榭臻g基地的姿勢(shì)有三個(gè)自由度,而空間基地的位置也有三個(gè)自由度,其中n代表了自由度數(shù)目。c)簡(jiǎn)化如下,整個(gè)系統(tǒng)是由剛體組成,因此,空間機(jī)械臂系統(tǒng)被認(rèn)為一種由n+1剛體組成的機(jī)械鏈。d)uss的運(yùn)動(dòng)狀態(tài)的可以被空間機(jī)器人系統(tǒng)的傳感器估計(jì)。Uss處于旋轉(zhuǎn)狀態(tài)下的主要參數(shù)是根據(jù)uss的動(dòng)力學(xué)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論