




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
有限樣本空間與隨機事件確定性現(xiàn)象:在一定條件下必然發(fā)生(出現(xiàn))的現(xiàn)象.隨機現(xiàn)象:在一定條件下不能事先預(yù)知結(jié)果,且各個結(jié)果發(fā)生的頻率都具有穩(wěn)定性的現(xiàn)象.課文精講導(dǎo)入在初中,我們已經(jīng)初步了解了隨機事件的概念,并學(xué)習(xí)了在試驗結(jié)果等可能的情形下求簡單隨機事件的概率.本節(jié)我們將進一步研究隨機事件及其概率的計算,探究隨機事件概率的性質(zhì).課文精講研究某種隨機現(xiàn)象的規(guī)律,首先要觀察它所有可能的基本結(jié)果.例如,將一枚硬幣拋擲2次,觀察正面、反面出現(xiàn)的情況;從你所在的班級隨機選擇10名學(xué)生,觀察近視的人數(shù);在一批燈管中任意抽取一只,測試它的壽命;從一批發(fā)芽的水稻種子中隨機選取一些,觀察分蘗數(shù);記錄某地區(qū)7月份的降雨量,等等.
我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗(random
experiment),簡稱試驗,常用字母E表示.隨機試驗的特點:⑴試驗可以在相同條件下重復(fù)進行;(可重復(fù)性)⑵試驗的所有可能結(jié)果是明確可知的,并且不止一個;(可預(yù)知性)⑶每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但事先不能確定出現(xiàn)哪一個結(jié)果.(隨機性)課文精講體育彩票搖獎時,將10個質(zhì)地和大小完全相同、分別標(biāo)號0,1,2,…,9的球放入搖獎器中,經(jīng)過充分?jǐn)嚢韬髶u出一個球,觀察這個球的號碼.這個隨機試驗共有多少個可能結(jié)果?如何表示這些結(jié)果?觀察球的號碼,共有10種可能結(jié)果.用數(shù)字m表示“搖出的球的號碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示為{0,1,2,3,4,5,6,7,8,9}.課文精講我們把隨機試驗E的每個可能的基本結(jié)果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間.一般地,我們用Ω表示樣本空間,用w表示樣本點.如果一個隨機試驗有n個可能結(jié)果w1,w2,…,wn,則稱樣本空間Ω={w1,w2,…,wn}為有限樣本空間.有了樣本點和樣本空間的概念,我們就可以用數(shù)學(xué)方法描述和研究隨機現(xiàn)象了.樣本點樣本點:
隨機試驗E的每個可能的基本結(jié)果樣本空間:全體樣本點的集合有限樣本空間:樣本空間為有限集
…Ω典型例題例1:拋擲一枚硬幣,觀察它落地時哪一面朝上,寫出試驗的樣本空間.解:因為落地時只有正面朝上和反面朝上兩個可能結(jié)果,所以試驗的樣本空間可以表示為Ω={正面朝上,反面朝上}.如果用h表示“正面朝上”,t表示“反面朝上”,則樣本空間Ω={h,t}.典型例題例2:拋擲一枚骰子,觀察它落地時朝上的面的點數(shù),寫出試驗的樣本空間.解:用i表示朝上面的“點數(shù)為i”.因為落地時朝上面的點數(shù)有1,2,3,4,5,6共6個可能的基本結(jié)果,所以試驗的樣本空間可以表示為Ω={1,2,3,4,5,6}.典型例題例3:拋擲兩枚硬幣,觀察它們落地時朝上的面的情況,寫出試驗的樣本空間.解:拋擲兩枚硬幣,第一枚硬幣可能的基本結(jié)果用x表示,第二枚硬幣可能的基本結(jié)果用y表示,那么試驗的樣本點可用(x,y)表示.于是,試驗的樣本空間Ω={(正面,正面),(正面,反面),(反面,正面),(反面,反面)}.典型例題如果我們用1表示硬幣“正面朝上”,用0表示硬幣“反面朝上”,那么樣本空間還可以簡單表示為Ω={(1,1),(1,0),(0,1),(0,0)}.第一枚第二枚課文精講在體育彩票搖號試驗中,搖出“球的號碼為奇數(shù)”是隨機事件嗎?搖出“球的號碼為3的倍數(shù)”是否也是隨機事件?如果用集合的形式來表示它們,那么這些集合與樣本空間有什么關(guān)系?課文精講顯然,“球的號碼為奇數(shù)”和“球的號碼為3的倍數(shù)”都是隨機事件.我們用A表示隨機事件“球的號碼為奇數(shù)”,則A發(fā)生,當(dāng)且僅當(dāng)搖出的號碼為1,3,5,7,9之一,即事件A發(fā)生等價于搖出的號碼屬于集合{1,3,5,7,9}.因此可以用樣本空間Ω={0,1,2,3,4,5,6,7,8,9}的子集{1,3,5,7,9}表示隨機事件A.類似地,可以用樣本空間的子集{0,3,6,9}表示隨機事件“球的號碼為3的倍數(shù)”.課文精講一般地,隨機試驗中的每個隨機事件都可以用這個試驗的樣本空間的子集來表示.為了敘述方便,我們將樣本空間Ω的子集稱為隨機事件,簡稱事件,并把只包含一個樣本點的事件稱為基本事件.隨機事件一般用大寫字母A,B,C,…表示.在每次試驗中,當(dāng)且僅當(dāng)A中某個樣本點出現(xiàn)時,稱為事件A發(fā)生.課文精講Ω作為自身的子集,包含了所有的樣本點,在每次試驗中總有一個樣本點發(fā)生,所以Ω總會發(fā)生,我們稱Ω為必然事件.而空集?不包含任何樣本點,在每次試驗中都不會發(fā)生,我們稱?為不可能事件.必然事件與不可能事件不具有隨機性.為了方便統(tǒng)一處理,將必然事件和不可能事件作為隨機事件的兩個極端情形.這樣,每個事件都是樣本空間Ω的一個子集.隨機事件:樣本空間的子集基本事件:(單元素集)只包含一個樣本點的事件必然事件(全集)
不可能事件(空集)典型例題例4:如圖,一個電路中有A,B,C三個電器元件,每個元件可能正常,也可能失效.把這個電路是否為通路看成是一個隨機現(xiàn)象,觀察這個電路中各元件是否正常.(1)寫出試驗的樣本空間;(2)用集合表示下列事件:M=“恰好兩個元件正?!?N=“電路是通路”;T=“電路是斷路”.典型例題解:(1)分別用x1,x2和x3表示元件A,B和C的可能狀態(tài),則這個電路的工作狀態(tài)可用(x1,x2,x3)表示.進一步地,用1表示元件的“正?!睜顟B(tài),用0表示“失效”狀態(tài),則樣本空間Ω={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)}.典型例題元件A元件B元件C可能結(jié)果典型例題元件A元件B元件C可能結(jié)果典型例題(2)“恰好兩個元件正?!钡葍r于(x1,x2,x3)∈Ω且x1,x2,x3中恰有兩個為1,所以M={(1,1,0),(1,0,1),(0,1,1)}.“電路是通路”等價于(x1,x2,x3)∈Ω,x1=1,且x2,x3中至少有一個是1,所以N={(1,1,0),(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度證件外借風(fēng)險評估與管理合同
- 洗衣店裝修簡易協(xié)議
- 二零二五年度商場家居用品柜臺租賃管理合同
- 2025年度建筑工程施工環(huán)境保護責(zé)任協(xié)議書
- 2025年度供應(yīng)鏈物流保密協(xié)議合同
- 文化產(chǎn)業(yè)借款融資居間合同
- 2025年度農(nóng)村土地承包經(jīng)營權(quán)流轉(zhuǎn)及農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整合作合同
- 2025年度企業(yè)兼職市場營銷人員勞務(wù)合同模板
- 2025年度房產(chǎn)贈與資產(chǎn)重組合同
- 2025年度人工智能系統(tǒng)維護與數(shù)據(jù)安全合同
- 31863:2015企業(yè)履約能力達標(biāo)全套管理制度
- 蘇教版數(shù)學(xué)二年級下冊《認(rèn)識時分》教案(無錫公開課)
- 軌道交通云平臺業(yè)務(wù)關(guān)鍵技術(shù)發(fā)展趨勢
- 打造金融級智能中臺的數(shù)據(jù)底座
- 工程合同管理教材(共202頁).ppt
- ANKYLOS機械并發(fā)癥處理方法
- 道路橋梁實習(xí)日記12篇
- 第十章運動代償
- 氬弧焊機保養(yǎng)記錄表
- 明星97iii程序說明書
- 《企業(yè)經(jīng)營統(tǒng)計學(xué)》課程教學(xué)大綱
評論
0/150
提交評論