版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
人教版數(shù)學中考總復習全考點八年級數(shù)學(上)知識點人教版八年級上冊主要包括全等三角形、軸對稱、實數(shù)、一次函數(shù)和整式的乘除與分解因式五個章節(jié)的內(nèi)容。第十一章全等三角形一.知識框架二.知識概念1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。2.全等三角形的性質(zhì):全等三角形的對應角相等、對應邊相等。3.三角形全等的判定公理及推論有:(1)“邊角邊”簡稱“SAS”(2)“角邊角”簡稱“ASA”(3)“邊邊邊”簡稱“SSS”(4)“角角邊”簡稱“AAS”(5)斜邊和直角邊相等的兩直角三角形(HL)。4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).在學習三角形的全等時,教師應該從實際生活中的圖形出發(fā),引出全等圖形進而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學生的集合思維,啟發(fā)他們的靈感,使學生體會到集合的真正魅力。第十二章軸對稱一.知識框架二.知識概念1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。(2)角平分線上的點到角兩邊距離相等。(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。(5)軸對稱圖形上對應線段相等、對應角相等。3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。5.等腰三角形的判定:等角對等邊。6.等邊三角形角的特點:三個內(nèi)角相等,等于60°,7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。有一個角是60°的等腰三角形是等邊三角形有兩個角是60°的三角形是等邊三角形。8.直角三角形中,30°角所對的直角邊等于斜邊的一半。9.直角三角形斜邊上的中線等于斜邊的一半。本章內(nèi)容要求學生在建立在軸對稱概念的基礎上,能夠?qū)ι钪械膱D形進行分析鑒賞,親身經(jīng)歷數(shù)學美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學問題。第十三章實數(shù)1.算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。2.平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。3.正數(shù)有兩個平方根(一正一負)它們互為相反數(shù);0只有一個平方根,就是它本身;負數(shù)沒有平方根。4.正數(shù)的立方根是正數(shù);0的立方根是0;負數(shù)的立方根是負數(shù)。5.數(shù)a的相反數(shù)是-a,一個正實數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0實數(shù)部分主要要求學生了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點一一對應,能估算無理數(shù)的大小;了解實數(shù)的運算法則及運算律,會進行實數(shù)的運算。重點是實數(shù)的意義和實數(shù)的分類;實數(shù)的運算法則及運算律。第十四章一次函數(shù)一.知識框架二.知識概念1.一次函數(shù):若兩個變量x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(0,0)的一條直線。3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點的直線,當k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。4.已知兩點坐標求函數(shù)解析式:待定系數(shù)法一次函數(shù)是初中學生學習函數(shù)的開始,也是今后學習其它函數(shù)知識的基石。在學習本章內(nèi)容時,教師應該多從實際問題出發(fā),引出變量,從具體到抽象的認識事物。培養(yǎng)學生良好的變化與對應意識,體會數(shù)形結(jié)合的思想。在教學過程中,應更加側(cè)重于理解和運用,在解決實際問題的同時,讓學習體會到數(shù)學的實用價值和樂趣。第十五章整式的乘除與分解因式1.同底數(shù)冪的乘法法則:(m,n都是正數(shù))2..冪的乘方法則:(m,n都是正數(shù))3.整式的乘法(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。(3).多項式與多項式相乘多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。4.平方差公式:5.完全平方公式:6.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n).在應用時需要注意以下幾點:①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.②任何不等于0的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無意義.③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的;當a<0時,a-p的值可能是正也可能是負的,如,④運算要注意運算順序.7.整式的除法單項式除法單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.分解因式的一般方法:1.提公共因式法2.運用公式法3.十字相乘法分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;(2)再看能否使用公式法;(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達到分解的目的;(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;(5)因式分解的結(jié)果必須進行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.整式的乘除與分解因式這章內(nèi)容知識點較多,表面看來零碎的概念和性質(zhì)也較多,但實際上是密不可分的整體。在學習本章內(nèi)容時,應多準備些小組合作與交流活動,培養(yǎng)學生推理能力、計算能力。在做題中體驗數(shù)學法則、公式的簡潔美、和諧美,提高做題效率。八年級數(shù)學(下)知識點人教版八年級下冊主要包括了分式、反比例函數(shù)、勾股定理、四邊形、數(shù)據(jù)的分析五章內(nèi)容。第十六章分式一.知識框架二.知識概念1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。2.分式有意義的條件:分母不等于03.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。分式的基本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*CA/B=A÷C/B÷C(A,B,C為整式,且C≠0)5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.6.分式的四則運算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b*c/d=ac/bd4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b÷c/d=a/b*d/c7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗根(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產(chǎn)生增根).分式和分數(shù)有著許多相似點。教師在講授本章內(nèi)容時,可以對比分數(shù)的特點及性質(zhì),讓學生自主學習。重點在于分式方程解實際應用問題。第十七章反比例函數(shù)第十七章反比例函數(shù)一.知識框架二.知識概念1.反比例函數(shù):形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和y=-x。對稱中心是:原點3.性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減??;當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大。4.|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。在學習反比例函數(shù)時,教師可讓學生對比之前所學習的一次函數(shù)啟發(fā)學生進行對比性學習。在做題時,培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。第十八章勾股定理一.知識框架2二1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。2.定理:經(jīng)過證明被確認正確的命題叫做定理。3.我們把題設、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)勾股定理是直角三角形具備的重要性質(zhì)。本章要求學生在理解勾股定理的前提下,學會利用這個定理解決實際問題??梢酝ㄟ^自主學習的發(fā)展體驗獲取數(shù)學知識的感受。第十九章四邊形一.知識框架二.知識概念1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。3.平行四邊形的判定.兩組對邊分別相等的四邊形是平行四邊形.對角線互相平分的四邊形是平行四邊形;.兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。5.直角三角形斜邊上的中線等于斜邊的一半。6.矩形的定義:有一個角是直角的平行四邊形。7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD8.矩形判定定理:.有一個角是直角的平行四邊形叫做矩形。.對角線相等的平行四邊形是矩形。.有三個角是直角的四邊形是矩形。9.菱形的定義:鄰邊相等的平行四邊形。10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。11.菱形的判定定理:.一組鄰邊相等的平行四邊形是菱形。對角線互相垂直的平行四邊形是菱形。四條邊相等的四邊形是菱形。12.S菱形=1/2×ab(a、b為兩條對角線)13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。14.正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。15.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。16.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。17.直角梯形的定義:有一個角是直角的梯形18.等腰梯形的定義:兩腰相等的梯形。19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的研究,要求學生在學習過程中多動手多動腦,把自己的發(fā)現(xiàn)和知識帶入做題中。因此教師在教學時可以多鼓勵學生自己總結(jié)四邊形的特點,這樣有利于學生對知識的把握。第二十章數(shù)據(jù)的分析一.知識框架二.知識概念1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式。權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度。2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。本章內(nèi)容要求學生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學生的統(tǒng)計意識和數(shù)據(jù)處理的方法與能力。在教學過程中,以生活實例為主,讓學生體會到數(shù)據(jù)在生活中的重要性。九年級數(shù)學(上)知識點人教版九年級數(shù)學上冊主要包括了二次根式、二元一次方程、旋轉(zhuǎn)、圓和概率五個章節(jié)的內(nèi)容。第二十一章二次根式一.知識框架二.知識概念二次根式:一般地,形如√?。╝≥0)的代數(shù)式叫做二次根式。當a>0時,√a表示a的算數(shù)平方根,其中√0=0對于本章內(nèi)容,教學中應達到以下幾方面要求:1.理解二次根式的概念,了解被開方數(shù)必須是非負數(shù)的理由;2.了解最簡二次根式的概念;3.理解并掌握下列結(jié)論:1)是非負數(shù);(2);(3);4.掌握二次根式的加、減、乘、除運算法則,會用它們進行有關實數(shù)的簡單四則運算;5.了解代數(shù)式的概念,進一步體會代數(shù)式在表示數(shù)量關系方面的作用。第二十二章一元二次根式一.知識框架二.知識概念一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.本章內(nèi)容主要要求學生在理解一元二次方程的前提下,通過解方程來解決一些實際問題。(1)運用開平方法解形如(x+m)2=n(n≥0)的方程;領會降次──轉(zhuǎn)化的數(shù)學思想.(2)配方法解一元二次方程的一般步驟:現(xiàn)將已知方程化為一般形式;化二次項系數(shù)為1;常數(shù)項移到右邊;方程兩邊都加上一次項系數(shù)的一半的平方,使左邊配成一個完全平方式;變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程無實根.介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了“公式法”以后,學生對這個內(nèi)容會有進一步的理解。(3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定,因此:解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a、b、c代入式子x=就得到方程的根.(公式所出現(xiàn)的運算,恰好包括了所學過的六中運算,加、減、乘、除、乘方、開方,這體現(xiàn)了公式的統(tǒng)一性與和諧性。)這個式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.第二十三章旋轉(zhuǎn)一.知識框架二.知識概念1.旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度,這樣的運動叫做圖形的旋轉(zhuǎn)。這個定點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞著某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應點到旋轉(zhuǎn)中心的距離相等,對應線段的長度、對應角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)2.旋轉(zhuǎn)對稱中心:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。3.中心對稱圖形與中心對稱:中心對稱圖形:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。中心對稱:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。4.中心對稱的性質(zhì):關于中心對稱的兩個圖形是全等形。關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。關于中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。本章內(nèi)容通過讓學生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數(shù)學的快樂,激發(fā)對學習學習。第二十四章圓一.知識框架二.知識概念1.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。4.內(nèi)心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。6.圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。7.圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。8.直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。9.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。10.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。11.切線的性質(zhì):(1)經(jīng)過切點垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點的半徑。12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。13.有關定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.14.圓的計算公式1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/18015.扇形面積S=π(R^2-r^2)5.圓錐側(cè)面積S=πrl第二十五章概率知識框架本章內(nèi)容要求學生了解事件的可能性,在探究交流中學習體驗概率在生活中的樂趣和實用性,學會計算概率。九年級數(shù)學(下)知識點人教版九年級數(shù)學下冊主要包括了二次函數(shù)、相似、銳角三角形、投影與視圖四個章節(jié)的內(nèi)容。第二十六章二次函數(shù)一.知識框架二..知識概念1.二次函數(shù):一般地,自變量x和因變量y之間存在如下關系:一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。2.二次函數(shù)的解析式三種形式。一般式y(tǒng)=ax2+bx+c(a≠0)頂點式交點式3.二次函數(shù)圖像與性質(zhì)對稱軸:頂點坐標:與y軸交點坐標(0,c)4.增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小5.二次函數(shù)圖像畫法:勾畫草圖關鍵點:開口方向?qū)ΨQ軸頂點與x軸交點與y軸交點6.圖像平移步驟(1)配方,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減7.二次函數(shù)的對稱性二次函數(shù)是軸對稱圖形,有這樣一個結(jié)論:當橫坐標為x1,x2其對應的縱坐標相等那么對稱軸8.根據(jù)圖像判斷a,b,c的符號(1)a——開口方向(2)b——對稱軸與a左同右異9.二次函數(shù)與一元二次方程的關系拋物線y=ax2+bx+c與x軸交點的橫坐標x1,x2是一元二次方程ax2+bx+c=0(a≠0)的根。拋物線y=ax2+bx+c,當y=0時,拋物線便轉(zhuǎn)化為一元二次方程ax2+bx+c=0>0時,一元二次方程有兩個不相等的實根,二次函數(shù)圖像與x軸有兩個交點;=0時,一元二次方程有兩個相等的實根,二次函數(shù)圖像與x軸有一個交點;<0時,一元二次方程有不等的實根,二次函數(shù)圖像與x軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人住宅裝潢協(xié)議范本(2024年修訂)版
- 2025年度叉車安全操作培訓課程優(yōu)化與推廣合同4篇
- 2025版廠房買賣及土地使用權(quán)變更與售后服務合同4篇
- 專業(yè)咨詢顧問合作合同(2024年度版)版B版
- 2025年度拆除宴會廳墻體改造項目施工協(xié)議4篇
- 2024陶瓷杯系列新品研發(fā)與市場推廣合作合同3篇
- 2025年度企業(yè)股權(quán)激勵計劃稅務籌劃與合規(guī)合同3篇
- 2025年新能源電站設備購銷合同協(xié)議4篇
- 2025年度醫(yī)療中心場地租賃及醫(yī)療設備租賃補充協(xié)議3篇
- 2025年度醫(yī)療設備存放租賃合同(2025年度)4篇
- 茶室經(jīng)營方案
- 軍隊文職崗位述職報告
- 小學數(shù)學六年級解方程練習300題及答案
- 電抗器噪聲控制與減振技術
- 中醫(yī)健康宣教手冊
- 2024年江蘇揚州市高郵市國有企業(yè)招聘筆試參考題庫附帶答案詳解
- 消費醫(yī)療行業(yè)報告
- 品學課堂新范式
- GB/T 1196-2023重熔用鋁錠
- 運輸行業(yè)員工崗前安全培訓
- 公路工程安全風險辨識與防控手冊
評論
0/150
提交評論