黑龍江省齊齊哈爾市2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
黑龍江省齊齊哈爾市2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
黑龍江省齊齊哈爾市2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
黑龍江省齊齊哈爾市2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
黑龍江省齊齊哈爾市2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省齊齊哈爾市2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.是雙曲線:上一點(diǎn),已知,則的值()A. B.C.或 D.2.已知雙曲線的一條漸近線方程是,它的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,則雙曲線的方程為()A. B.C. D.3.若方程表示圓,則實(shí)數(shù)的取值范圍為()A. B.C. D.4.已知數(shù)列中,,則()A. B.C. D.5.已知數(shù)列滿足,且,那么()A. B.C. D.6.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點(diǎn),則與平面所成角的余弦值為()A. B.C. D.7.某校開學(xué)“迎新”活動中要把3名男生,2名女生安排在5個(gè)崗位,每人安排一個(gè)崗位,每個(gè)崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.368.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點(diǎn),且其“歐拉線”與圓相切,則:①.圓M上的點(diǎn)到原點(diǎn)的最大距離為②.圓M上存在三個(gè)點(diǎn)到直線的距離為③.若點(diǎn)在圓M上,則的最小值是④.若圓M與圓有公共點(diǎn),則上述結(jié)論中正確的有()個(gè)A.1 B.2C.3 D.49.已知點(diǎn),則直線的傾斜角為()A. B.C. D.10.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.11.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.212.與直線關(guān)于軸對稱的直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和則____________________14.已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為10.拋物線的方程為_____________;準(zhǔn)線方程為_______15.在遞增等比數(shù)列中,其前項(xiàng)和,若,,則_________.16.已知直線和平面,且;①若異面,則至少有一個(gè)與相交;②若垂直,則至少有一個(gè)與垂直;對于以上命題中,所有正確的序號是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn),直線:,直線m過點(diǎn)N且與垂直,直線m交圓于兩點(diǎn)A,B.(1)求直線m的方程;(2)求弦AB的長.18.(12分)已知函數(shù),其中為常數(shù),且(1)求證:時(shí),;(2)已知a,b,p,q為正實(shí)數(shù),滿足,比較與的大小關(guān)系.19.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求點(diǎn)到平面的距離.20.(12分)已知橢圓C與橢圓有相同的焦點(diǎn),且離心率為.(1)橢圓C的標(biāo)準(zhǔn)方程;(2)若橢圓C的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且,求的面積.21.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時(shí),求實(shí)數(shù)a的取值范圍;若命題q為假時(shí),求實(shí)數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實(shí)數(shù)a的取值范圍22.(10分)已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0.(1)m∈R時(shí),證明l與C總相交;(2)m取何值時(shí),l被C截得的弦長最短?求此弦長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點(diǎn)到焦點(diǎn)的距離的取值范圍,即可求解.【題目詳解】雙曲線方程為:,是雙曲線:上一點(diǎn),,,或,又,.故選:B2、A【解題分析】根據(jù)雙曲線漸近線方程得a和b的關(guān)系,根據(jù)焦點(diǎn)在拋物線準(zhǔn)線上得c的值,結(jié)合a、b、c關(guān)系即可求解.【題目詳解】∵雙曲線的一條漸近線方程是,∴,∵準(zhǔn)線方程是,∴,∵,∴,,∴雙曲線標(biāo)準(zhǔn)方程為:.故選:A.3、D【解題分析】將方程化為標(biāo)準(zhǔn)式即可.【題目詳解】方程化為標(biāo)準(zhǔn)式得,則.故選:D.4、D【解題分析】由數(shù)列的遞推公式依次去求,直到求出即可.【題目詳解】由,可得,,,故選:D.5、D【解題分析】由遞推公式得到,,,再結(jié)合已知即可求解.【題目詳解】解:由,得,,又,那么故選:D6、C【解題分析】以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PB與平面PEF所成角的正弦值.【題目詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點(diǎn),∴以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面PEF的法向量,則,取,得,設(shè)PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.7、A【解題分析】以位置優(yōu)先法去安排即可解決.【題目詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個(gè)崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A8、A【解題分析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點(diǎn)的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點(diǎn)與定點(diǎn)連線的斜率判斷C;由兩個(gè)圓有公共點(diǎn)可得圓心距與兩個(gè)半徑之間的關(guān)系,求得的取值范圍判斷D【題目詳解】由題意,△的歐拉線即的垂直平分線,,,的中點(diǎn)坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點(diǎn)的距離為,則圓上的點(diǎn)到原點(diǎn)的最大距離為,故①錯(cuò)誤;圓心到直線的距離為,圓上存在三個(gè)點(diǎn)到直線的距離為,故②正確;的幾何意義:圓上的點(diǎn)與定點(diǎn)連線的斜率,設(shè)過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯(cuò)誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點(diǎn),則圓心距的范圍為,,,解得,故④錯(cuò)誤故選:A9、A【解題分析】由兩點(diǎn)坐標(biāo),求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【題目詳解】設(shè)直線AB的傾斜角為,因?yàn)?,所以直線AB的斜率,即,因?yàn)?,所?故選:A10、C【解題分析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【題目詳解】令,則當(dāng)時(shí),,當(dāng)時(shí),即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.11、C【解題分析】設(shè)的首項(xiàng)為,把已知的兩式相減即得解.【題目詳解】解:設(shè)的首項(xiàng)為,根據(jù)題意得,兩式相減得.故選:C12、D【解題分析】點(diǎn)關(guān)于x軸對稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【題目詳解】設(shè)(x,y)是與直線關(guān)于軸對稱的直線上任意一點(diǎn),則(x,-y)在上,故,∴與直線關(guān)于軸對稱的直線的方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】根據(jù)數(shù)列中與的關(guān)系,即可求出通項(xiàng)公式.【題目詳解】當(dāng)時(shí),,當(dāng)時(shí),,時(shí),也適合,綜上,,(),故答案為:【題目點(diǎn)撥】本題主要考查了數(shù)列前n項(xiàng)和與通項(xiàng)間的關(guān)系,屬于容易題.14、①.②.【解題分析】由題意得:拋物線焦點(diǎn)為F(0,),準(zhǔn)線方程為y=﹣.因?yàn)辄c(diǎn)到其焦點(diǎn)的距離為10,所以根據(jù)拋物線的定義得到方程,得到該拋物線的準(zhǔn)線方程【題目詳解】∵拋物線方程∴拋物線焦點(diǎn)為F(0,),準(zhǔn)線方程為y=﹣,又∵點(diǎn)到其焦點(diǎn)的距離為10,∴根據(jù)拋物線的定義,得9+=10,∴p=2,拋物線∴準(zhǔn)線方程為故答案為:,.15、【解題分析】根據(jù)等比數(shù)列下標(biāo)和性質(zhì)得到,從而解出、,即可求出公比,從而求出,,即可得解;【題目詳解】解:因?yàn)?,所以,因?yàn)?,所以、為方程的兩根,所以或,因?yàn)闉檫f增的等比數(shù)列,所以,所以所以或(舍去),所以,,所以故答案為:16、①②【解題分析】假設(shè)與都不相交得到,得到①正確,若不垂直,上取一點(diǎn),作交于,得到,得到②正確,得到答案.【題目詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點(diǎn),作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)求出斜率,用點(diǎn)斜式求直線方程;(2)利用垂徑定理求弦長.【小問1詳解】因?yàn)橹本€:,所以直線的斜率為.因?yàn)橹本€m過點(diǎn)N且與垂直,所以直線的斜率為,又過點(diǎn),所以直線:,即【小問2詳解】直線與圓相交,則圓心到直線的距離為:,圓的半徑為,所以弦長18、(1)證明見解析(2)【解題分析】(1)根據(jù)導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性求出其最大值,即可證出;(2)由(1)知:,再變形即可得出小問1詳解】因?yàn)?,∴在上單調(diào)遞減,又因,故當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以.【小問2詳解】由(1)知:,兩邊同乘以a得:,∴,即.19、(1)證明見解析;(2).【解題分析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)結(jié)合(1),進(jìn)而利用等體積法求得答案.【小問1詳解】由題意,,為等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又平面.【小問2詳解】設(shè)M到平面的距離為d,,∴.易得,取BD的中點(diǎn)N,連接,則,所以,,所以,,.即M到平面的距離為1.20、(1)(2)【解題分析】(1)由題意求出即可求解;(2)由橢圓的定義和三角形面積公式求解即可【小問1詳解】因?yàn)闄E圓C與橢圓有相同的焦點(diǎn),所以橢圓C的焦點(diǎn),,,又,所以,,所以橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】由,,得,,而,所以,所以21、(1)p為真時(shí)或,q為假時(shí);(2){或}.【解題分析】(1)p為真應(yīng)用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應(yīng)的參數(shù)范圍.(2)由題設(shè)易得p、q一真一假,討論p、q的真假,結(jié)合(1)的結(jié)果求a的取值范圍【小問1詳解】若p真,則有實(shí)數(shù)根,∴,解得或若q為真,則,即故q為假時(shí),實(shí)數(shù)a的取值范圍為【小問2詳解】∵命題真命題,命題為假命題,∴p,q一真一假,當(dāng)p真q假時(shí),,可得當(dāng)p假q真時(shí),,可得綜上,實(shí)數(shù)a取值范圍為或.22、(1)證明見解析;(2)當(dāng)時(shí),l被C截得的弦長最短,最短弦長為.【解題分析】(1)求出直線l的定點(diǎn),進(jìn)而判斷定點(diǎn)和圓C的位置關(guān)系,最后得到答案;(2)當(dāng)圓心C到直線l的距離最大時(shí),弦長最短,進(jìn)而求出m,然后根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論