2024屆江蘇省無錫市江陰市高二上數(shù)學期末調(diào)研試題含解析_第1頁
2024屆江蘇省無錫市江陰市高二上數(shù)學期末調(diào)研試題含解析_第2頁
2024屆江蘇省無錫市江陰市高二上數(shù)學期末調(diào)研試題含解析_第3頁
2024屆江蘇省無錫市江陰市高二上數(shù)學期末調(diào)研試題含解析_第4頁
2024屆江蘇省無錫市江陰市高二上數(shù)學期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省無錫市江陰市高二上數(shù)學期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.2.已知點,則滿足點到直線的距離為,點到直線距離為的直線的條數(shù)有()A.1 B.2C.3 D.43.以軸為對稱軸,頂點為坐標原點,焦點到準線的距離為4的拋物線方程是()A. B.C.或 D.或4.設(shè)拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是()A.6 B.8C.9 D.105.已知定義在R上的函數(shù)滿足,且有,則的解集為()A B.C. D.6.如果橢圓的弦被點平分,那么這條弦所在的直線的方程是()A. B.C. D.7.已知平面內(nèi)有一點,平面的一個法向量為,則下列四個點中在平面內(nèi)的是()A. B.C. D.8.關(guān)于的不等式的解集為,則關(guān)于的不等式的解集為A. B.C. D.9.已知直線,若異面,,則的位置關(guān)系是()A.異面 B.相交C.平行或異面 D.相交或異面10.函數(shù)的定義域為,其導(dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.511.“五一”期間,甲、乙、丙三個大學生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實是甲、乙、丙三人陳述都只對了一半(關(guān)于去向的地點僅對一個).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南12.已知直線過點,且其方向向量,則直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.知函數(shù),若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍為_____________.14.已知點和,圓,當圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________15.已知空間向量,且,則___________.16.在三棱錐中,點Р在底面ABC內(nèi)的射影為Q,若,則點Q定是的______心三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為2的正方體中,,分別為線段,的中點.(1)求點到平面的距離;(2)求平面與平面夾角的余弦值.18.(12分)已知橢圓C:過兩點(1)求C的方程;(2)定點M坐標為,過C右焦點的直線與C交于P,Q兩點,判斷是否為定值?若是,求出該定值,若不是,請說明理由19.(12分)在①,;②,,③,這三個條件中任選一個,補充在下面問題中并解決問題問題:設(shè)等差數(shù)列的前項和為,________________,若,判斷是否存在最大值,若存在,求出取最大值時的值;若不存在,說明理由注:如果選擇多個條件分別解答.按第一個解答記分20.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.21.(12分)如圖,點О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點B到平面APQ的距離:(2)設(shè)E為棱PC上的點,且,若直線DE與平面APQ所成角的正弦值為,試求實數(shù)的值22.(10分)在平面直角坐標系中,已知圓,點P在圓上,過點P作x軸的垂線,垂足為是的中點,當P在圓M上運動時N形成的軌跡為C(1)求C的軌跡方程;(2)若點,試問在x軸上是否存在點M,使得過點M的動直線交C于兩點時,恒有?若存在,求出點M的坐標;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質(zhì).2、D【解題分析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉(zhuǎn)化為求圓與圓的公切線條數(shù),判斷兩圓的位置關(guān)系,從而得公切線條數(shù).【題目詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點到直線的距離為,點到直線距離為的直線的條數(shù)即為圓與圓的公切線條數(shù),因為,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【題目點撥】解答本題的關(guān)鍵是將滿足點到直線的距離為,點到直線距離為的直線的條數(shù)轉(zhuǎn)化為圓與圓的公切線條數(shù),從而根據(jù)圓與圓的位置關(guān)系判斷出公切線條數(shù).3、C【解題分析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標準方程.【題目詳解】依題意設(shè)拋物線方程為因為焦點到準線的距離為4,所以,所以,所以拋物線方程或故選:C4、A【解題分析】計算拋物線的準線,根據(jù)距離結(jié)合拋物線的定義得到答案.【題目詳解】拋物線的焦點為,準線方程為,到軸的距離是4,故到準線的距離是,故點到該拋物線焦點的距離是.故選:A.5、A【解題分析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【題目詳解】設(shè),則,∴在R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A6、B【解題分析】設(shè)該弦所在直線與橢圓的兩個交點分別為,,則,利用點差法可得答案.【題目詳解】設(shè)該弦所在直線與橢圓的兩個交點分別為,,則因為,兩式相減可得,,即由中點公式可得,所以,即,所以AB所在直線方程為,即故選:B7、A【解題分析】設(shè)所求點的坐標為,由,逐一驗證選項即可【題目詳解】設(shè)所求點的坐標為,則,因為平面的一個法向量為,所以,,對于選項A,,對于選項B,,對于選項C,,對于選項D,故選:A8、B【解題分析】設(shè),解集為所以二次函數(shù)圖像開口向下,且與交點為,由韋達定理得所以的解集為,故選B.9、D【解題分析】以正方體為載體說明即可.【題目詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關(guān)系是相交或異面.故選:D10、C【解題分析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【題目詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側(cè)的導(dǎo)數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.11、D【解題分析】根據(jù)題意,先假設(shè)甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設(shè)乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【題目詳解】由題意得,甲、乙、丙三人的陳述都只對了一半,假設(shè)甲去了北京正確,對于甲的陳述:則乙去西安錯誤,則乙去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南錯誤,乙去了北京也錯誤,故假設(shè)錯誤.假設(shè)乙去了西安正確,對于甲的陳述:則甲去了北京錯誤,則甲去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南正確,乙去了北京錯誤,此種假設(shè)滿足題意,故甲去了云南.故選:D12、D【解題分析】根據(jù)題意和直線的點方向式方程即可得出結(jié)果.【題目詳解】因為直線過點,且方向向量為,由直線的點方向式方程,可得直線的方程為:,整理,得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點的分布,進而求m的范圍.【題目詳解】由解析式知:在上為增函數(shù)且,在上,時為單調(diào)函數(shù),時無零點,故要使有兩個不同的零點,即兩側(cè)各有一個零點,所以在上必遞減且,則,可得.故答案為:14、【解題分析】當點和都在圓的內(nèi)部時,結(jié)合點與圓的位置關(guān)系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【題目詳解】當點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:15、【解題分析】根據(jù)空間向量共線的坐標表示可得出關(guān)于的等式,求出的值即可.【題目詳解】由已知可得,解得.故答案為:.16、外【解題分析】由可得,故是的外心.【題目詳解】解:如圖,∵點在底面ABC內(nèi)的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系.可根據(jù)題意寫出各個點的坐標,進而求出平面的法向量和的坐標,點到平面的距離.計算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出來,平面與平面夾角的余弦值為,計算即可求出答案.【小問1詳解】以為原點,為軸,為軸,為軸,建立如下圖所示的空間直角坐標系.由于正方體的棱長為2和,分別為線段,的中點知,.設(shè)平面的法向量為..則..故點到平面的距離.【小問2詳解】平面的法向量,平面與平面夾角的余弦值.18、(1);(2)為定值.【解題分析】(1)根據(jù)題意,列出的方程組,求解即可;(2)對直線的斜率是否存在進行討論,當直線斜率存在時,設(shè)出直線的方程,聯(lián)立橢圓方程,利用韋達定理,轉(zhuǎn)化,求解即可.【小問1詳解】因為橢圓過兩點,故可得,解得,故橢圓方程為:.【小問2詳解】由(1)可得:,故橢圓的右焦點的坐標為;當直線的斜率不存在時,此時直線的方程為:,代入橢圓方程,可得,不妨取,又,故.當直線的斜率存在時,設(shè)直線的方程為:,聯(lián)立橢圓方程,可得:,設(shè)坐標為,故可得,則.綜上所述,為定值.【題目點撥】本題考察橢圓方程的求解,以及橢圓中的定值問題;處理問題的關(guān)鍵是合理的利用韋達定理,將目標式進行轉(zhuǎn)化,屬中檔題.19、答案不唯一,具體見解析【解題分析】選①:易得,法一:令求n,即可為何值時取最大值;法二:寫出,利用等差數(shù)列前n項和的函數(shù)性質(zhì)判斷為何值時有最大值;選②:由數(shù)列前n項和及等差數(shù)列下標和的性質(zhì)易得、即可確定有最大值時值;選③:由等差數(shù)列前n項和公式易得、即可確定有最大值時值;【題目詳解】選①:設(shè)數(shù)列的公差為,,,解得,即,法一:當時,有,得,∴當時,;,;時,,∴或時,取最大值法二:,對稱軸,∴或時,取最大值選②:由,得,由等差中項的性質(zhì)有,即,由,得,∴,故,∴當時,,時,,故時,取最大值選③:由,得,可得,由,得,可得,∴,故,∴當時,,時,,故時,取最大值【題目點撥】關(guān)鍵點點睛:根據(jù)所選的條件,結(jié)合等差數(shù)列前n項和公式的性質(zhì)、下標和相等的性質(zhì)等確定數(shù)列中項的正負性,找到界點n值即可.20、(1)答案見解析(2)證明見解析【解題分析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時,,當時,令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問1詳解】的定義域為當時,,在上單調(diào)遞增;當時,令,解得;令,解得;綜上所述:當時,在上單調(diào)遞增,無減區(qū)間;當時,在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】,,即證:,即證:當時,,,當時,令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即21、(1)(2)或【解題分析】(1)以三棱錐等體積法求點到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可以列關(guān)于的方程,解之即可.【小問1詳解】點О是正四棱錐底面中心,點О是BD的中點,四邊形PQDO矩形,,兩點到平面APQ的距離相等.正四棱錐中,平面,平面,,,設(shè)點B到平面APQ的距離為d,則,即解之得,即點B到平面APQ的距離為【小問2詳解】取PC中點N,連接BN、ON、DN,則.平面平面正四棱錐中,,直線平面平面,平面平面,平面平面平面中,點E到直線ON的距離即為點E到平面的距離.中,,點P到直線ON的距離為△中,,設(shè)點E到平面的距離為d,則有,則則有,整理得,解之得或22、(1);(2)不存在,理由見解析.【解題分析】(1)設(shè),根據(jù)中點坐標公式用N的坐標表示P的坐標,將P的坐標代入圓M的方程化簡即可得N的軌跡方程;(2)假設(shè)存在,設(shè)M為(m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論