版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024年青海省西寧市大通二中數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.42.已知函數(shù)fx=sinωx+π6+A.16,13 B.13.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度4.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?,縱坐標(biāo)不變B.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變C.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?,縱坐標(biāo)不變D.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變5.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.6.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關(guān)于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關(guān)于直線對稱 D.的最大值是7.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.8.下圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.9.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.010.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知實數(shù)滿足,則的最小值為()A. B. C. D.12.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,為中點,則三棱錐的體積為________.14.實數(shù)滿足,則的最大值為_____.15.若,則的最小值為________.16.在的二項展開式中,x的系數(shù)為________.(用數(shù)值作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個零點,求實數(shù)的取值范圍;(2)當(dāng)時,對任意的恒成立,求實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)若在上是減函數(shù),求實數(shù)的最大值;(2)若,求證:.19.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實數(shù)a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.20.(12分)如圖,在平面直角坐標(biāo)系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準(zhǔn)線與圓C相切.(1)求橢圓E的方程;(2)設(shè)過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當(dāng)時,求直線l的方程.21.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當(dāng)為何值時,棧道總長度最短.22.(10分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
先用公差表示出,結(jié)合等比數(shù)列求出.【題目詳解】,因為成等比數(shù)列,所以,解得.【題目點撥】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.2、A【解題分析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【題目詳解】f當(dāng)x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【題目點撥】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.3、D【解題分析】
通過變形,通過“左加右減”即可得到答案.【題目詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【題目點撥】本題主要考查三角函數(shù)的平移變換,難度不大.4、A【解題分析】
由函數(shù)的最大值求出,根據(jù)周期求出,由五點畫法中的點坐標(biāo)求出,進(jìn)而求出的解析式,與對比結(jié)合坐標(biāo)變換關(guān)系,即可求出結(jié)論.【題目詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變)即可.故選:A【題目點撥】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.5、D【解題分析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【題目詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【題目點撥】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.6、D【解題分析】
通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結(jié)果.【題目詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯誤.故選:.【題目點撥】本題考查三角函數(shù)周期性和對稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題.7、C【解題分析】
求得點坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標(biāo),進(jìn)而求得【題目詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【題目點撥】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.8、D【解題分析】
根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【題目詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【題目點撥】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.9、B【解題分析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【題目詳解】因為即而所以夾角為故選:B【題目點撥】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.10、B【解題分析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【題目詳解】,,則在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,位于第二象限.故選:B【題目點撥】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.11、A【解題分析】
所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【題目詳解】解:因為滿足,則,當(dāng)且僅當(dāng)時取等號,故選:.【題目點撥】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項、添項應(yīng)注意檢驗利用基本不等式的前提.12、D【解題分析】
先由是偶函數(shù),得到關(guān)于直線對稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【題目詳解】因為是偶函數(shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時,由得,所以,解得;當(dāng)即時,由得,所以,解得;因此,的解集是.【題目點撥】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
試題分析:因為正三棱柱的底面邊長為,側(cè)棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.14、.【解題分析】
畫出可行域,解出可行域的頂點坐標(biāo),代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標(biāo)函數(shù)最值.【題目詳解】解:作出可行域,如圖所示,則當(dāng)直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【題目點撥】本題考查線性規(guī)劃的線性目標(biāo)函數(shù)的最優(yōu)解問題.線性目標(biāo)函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標(biāo)代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,從而確定目標(biāo)函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.15、【解題分析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!绢}目詳解】由題意,,當(dāng)且僅當(dāng)時等號成立,所以,當(dāng)且僅當(dāng)時取等號,所以當(dāng)時,取得最小值.【題目點撥】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件。16、-40【解題分析】
由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數(shù)【題目詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數(shù)為.故答案為:-40.【題目點撥】本題考查二項式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項式展開式通項的公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)將有兩個零點轉(zhuǎn)化為方程有兩個相異實根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問題轉(zhuǎn)化為對一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【題目詳解】(1)有兩個零點關(guān)于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時,,當(dāng)時,當(dāng)時,有兩個零點時,實數(shù)的取值范圍為;(2)當(dāng)時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當(dāng)時,,當(dāng)時,,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實數(shù)的取值范圍為.【題目點撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.18、(1)(2)詳見解析【解題分析】
(1),在上,因為是減函數(shù),所以恒成立,即恒成立,只需.令,,則,因為,所以.所以在上是增函數(shù),所以,所以,解得.所以實數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因為,當(dāng)從正方向趨近于0時,趨近于,趨近于1,所以,所以存在,使,即,,所以對任意,,即,所以在上是減函數(shù);對任意,,即,所以在上是增函數(shù),所以當(dāng)時,取得最小值,最小值為.由于,,則,當(dāng)且僅當(dāng),即時取等號,所以當(dāng)時,.19、(1);(2)【解題分析】
(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對恒成立求解(2)由(1)知,是的兩個根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【題目詳解】(1)的定義域為,.因為單調(diào),所以對恒成立,所以,恒成立,因為,當(dāng)且僅當(dāng)時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設(shè),則.因為,所以t為關(guān)于a的減函數(shù),所以..令,則.因為當(dāng)時,在上為減函數(shù).所以當(dāng)時,.從而,所以在上為減函數(shù).所以當(dāng)時,.【題目點撥】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.20、(1)(2)或.【解題分析】
(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設(shè),,顯然直線l的斜率存在,方法一:設(shè)直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設(shè)直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【題目詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準(zhǔn)線與圓C:相切.解得,,橢圓方程為:.(2)法1:設(shè),,顯然直線l的斜率存在,設(shè)直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯(lián)立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設(shè),,當(dāng)直線l與x軸重合時,不符題意.設(shè)直線l的方程為:.由方程組消去x得,,解得.由方程組消去x得,,解得.又,則有.即,解得,故直線l的方程為或.【題目點撥】本題考查求橢圓的標(biāo)準(zhǔn)方程,以及直線和橢圓的位置關(guān)系,考查學(xué)生的分析和運算能力.21、,;當(dāng)時,棧道總長度最短.【解題分析】
連,,由切線長定理知:,,,,即,,則,,進(jìn)而確定的取值范圍;根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高考數(shù)學(xué)全真模擬試題第12571期
- 江蘇省徐州市銅山區(qū)2023-2024學(xué)年九年級上學(xué)期期中物理試卷(含答案解析)
- 2024至2030年中國早茶點心車數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國手動平移氣調(diào)庫門行業(yè)投資前景及策略咨詢研究報告
- 2010-2012年非離子表面活性劑市場研究及預(yù)測分析報告
- 2024至2030年中國塑料馬甲袋數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國單筒紫外線凈水器數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國沖孔新型板數(shù)據(jù)監(jiān)測研究報告
- 2024年新疆維吾爾自治區(qū)中考語文試題含解析
- 2024年中國鏡架配件市場調(diào)查研究報告
- ESD技術(shù)要求和測試方法
- 傳感器原理溫度傳感器資料課件
- 種植支抗釘?shù)淖o(hù)理配合
- 輸液港相關(guān)護(hù)理課件
- 藝人分析報告
- 精神病監(jiān)護(hù)人責(zé)任承諾書范本
- 煤礦安全檢查工課件
- 開展買方信貸可行性報告
- 營養(yǎng)師培訓(xùn)飲食健康與飲食指導(dǎo)
- 海洋石油平臺結(jié)構(gòu)完整性分析
- 《平衡針灸》課件
評論
0/150
提交評論