版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶康德卷2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,點(diǎn)為中點(diǎn),過點(diǎn)的直線與,所在直線分別交于點(diǎn),,若,,則的最小值為()A. B.2 C.3 D.2.集合的真子集的個(gè)數(shù)為()A.7 B.8 C.31 D.323.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.1204.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.5.命題:的否定為A. B.C. D.6.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實(shí)數(shù)的取值范圍是A. B. C. D.7.計(jì)算等于()A. B. C. D.8.已知雙曲線的右焦點(diǎn)為F,過右頂點(diǎn)A且與x軸垂直的直線交雙曲線的一條漸近線于M點(diǎn),MF的中點(diǎn)恰好在雙曲線C上,則C的離心率為()A. B. C. D.9.已知、是雙曲線的左右焦點(diǎn),過點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn),若點(diǎn)在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.10.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.111.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)12.已知為正項(xiàng)等比數(shù)列,是它的前項(xiàng)和,若,且與的等差中項(xiàng)為,則的值是()A.29 B.30 C.31 D.32二、填空題:本題共4小題,每小題5分,共20分。13.五聲音階是中國(guó)古樂基本音階,故有成語(yǔ)“五音不全”.中國(guó)古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.14.某種圓柱形的如罐的容積為個(gè)立方單位,當(dāng)它的底面半徑和高的比值為______.時(shí),可使得所用材料最省.15.設(shè)為正實(shí)數(shù),若則的取值范圍是__________.16.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.18.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說明理由.19.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說明理由;(2)求二面角的余弦值.20.(12分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn).(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.22.(10分)某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗.晉級(jí)成功晉級(jí)失敗合計(jì)男16女50合計(jì)(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.024
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
由,,三點(diǎn)共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【題目詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)?,,所以.因?yàn)?,,三點(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以的最小值為1.故選:B【題目點(diǎn)撥】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、A【解題分析】
計(jì)算,再計(jì)算真子集個(gè)數(shù)得到答案.【題目詳解】,故真子集個(gè)數(shù)為:.故選:.【題目點(diǎn)撥】本題考查了集合的真子集個(gè)數(shù),意在考查學(xué)生的計(jì)算能力.3、A【解題分析】
對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【題目詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【題目點(diǎn)撥】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。4、C【解題分析】
由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【題目詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【題目點(diǎn)撥】本題主要考查常見簡(jiǎn)單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.5、C【解題分析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.6、D【解題分析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無(wú)數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.7、A【解題分析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對(duì)數(shù)運(yùn)算,求得所求表達(dá)式的值.【題目詳解】原式.故選:A【題目點(diǎn)撥】本小題主要考查誘導(dǎo)公式,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.8、A【解題分析】
設(shè),則MF的中點(diǎn)坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【題目詳解】雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,M所在直線為,不妨設(shè),∴MF的中點(diǎn)坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【題目點(diǎn)撥】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意構(gòu)造的齊次方程.9、A【解題分析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過點(diǎn)F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點(diǎn)M(,﹣),∵點(diǎn)M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.10、B【解題分析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【題目詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.11、A【解題分析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.12、B【解題分析】
設(shè)正項(xiàng)等比數(shù)列的公比為q,運(yùn)用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計(jì)算即可得到所求.【題目詳解】設(shè)正項(xiàng)等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項(xiàng)為,即有a4+a7=,即16q3+16q6,=,解得q=(負(fù)值舍去),則有S5===1.故選C.【題目點(diǎn)撥】本題考查等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,同時(shí)考查等差數(shù)列的性質(zhì),考查運(yùn)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個(gè)或第四個(gè)位置上,即可求出.【題目詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時(shí)有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個(gè)或第四個(gè)位置上,則有種;綜上,共有種.故答案為:1.【題目點(diǎn)撥】本題主要考查利用排列知識(shí)解決實(shí)際問題,涉及分步計(jì)數(shù)乘法原理和分類計(jì)數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運(yùn)用知識(shí)的能力,屬于基礎(chǔ)題.14、【解題分析】
設(shè)圓柱的高為,底面半徑為,根據(jù)容積為個(gè)立方單位可得,再列出該圓柱的表面積,利用導(dǎo)數(shù)求出最值,從而進(jìn)一步得到圓柱的底面半徑和高的比值.【題目詳解】設(shè)圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個(gè)立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調(diào)遞減,在上單調(diào)遞增.∴當(dāng)時(shí),取得最小值,即材料最省,此時(shí).故答案為:.【題目點(diǎn)撥】本題考查函數(shù)的應(yīng)用,解答本題的關(guān)鍵是寫出表面積的表示式,再利用導(dǎo)數(shù)求函數(shù)的最值,屬中檔題.15、【解題分析】
根據(jù),可得,進(jìn)而,有,而,令,得到,再用導(dǎo)數(shù)法求解,【題目詳解】因?yàn)?,所以,所以,所以,所以,令,,所以,?dāng)時(shí),,當(dāng)時(shí),所以當(dāng)時(shí),取得最大值,又,所以取值范圍是,故答案為:【題目點(diǎn)撥】本題主要考查基本不等式的應(yīng)用和導(dǎo)數(shù)法求最值,還考查了運(yùn)算求解的能力,屬于難題,16、【解題分析】
先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線即可解決.【題目詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【題目點(diǎn)撥】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解題分析】
(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【題目詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,設(shè),,,,而,即,.以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立如圖的空間坐標(biāo)系,則,,設(shè)平面的法向量為,由得,取,得,,同理可求得平面的法向量為,設(shè)二面角的平面角為,則,所以二面角的余弦值為.【題目點(diǎn)撥】本題考查了兩平面垂直的判定,考查了利用空間向量的方法求二面角,考查了棱錐的體積的計(jì)算,考查了空間想象能力及計(jì)算能力,屬于中檔題.18、(1)見解析;(2)存在,長(zhǎng)【解題分析】
(1)先證面,又因?yàn)槊?所以平面平面.(2)根據(jù)題意建立空間直角坐標(biāo)系.列出各點(diǎn)的坐標(biāo)表示,設(shè),則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長(zhǎng).【題目詳解】解:(1)證明:因?yàn)樗倪呅螢榫匦?∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系.如圖所示:則,,,,,設(shè),;∴,,設(shè)平面的法向量為,∴,不防設(shè).∴,化簡(jiǎn)得,解得或;當(dāng)時(shí),,∴;當(dāng)時(shí),,∴;綜上存在這樣的點(diǎn),線段的長(zhǎng).【題目點(diǎn)撥】本題考查平面與平面垂直的判定定理的應(yīng)用,考查利用線面所成角求參數(shù)問題,是幾何綜合題,考查空間想象力以及計(jì)算能力.19、(1)存在;詳見解析(2)【解題分析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長(zhǎng),寫出各點(diǎn)坐標(biāo),用向量法求二面角.【題目詳解】解:(1)當(dāng)為上靠近點(diǎn)的三等分點(diǎn)時(shí),滿足面.證明如下,取中點(diǎn),連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【題目點(diǎn)撥】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角.20、(1);(2)或.【解題分析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點(diǎn),且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標(biāo)關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標(biāo)滿足的要求,再利用兩直線與圓相切,求出點(diǎn)的坐標(biāo).試題解析:(1)解:設(shè),,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當(dāng)時(shí),,故直線的方程為.(2)設(shè),,,則.∴.設(shè),由直線和圓相切,得,即.設(shè),同理可得:.故是方程的兩根,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度服裝店品牌服裝定制與品牌產(chǎn)品代理銷售合同范本3篇
- 二零二五年度物聯(lián)網(wǎng)股權(quán)借款質(zhì)押投資合同3篇
- 2025版合伙購(gòu)買汽車用于城市觀光旅游租賃合同3篇
- 二零二五年度生物制藥原材料采購(gòu)合同113篇
- 焦作工貿(mào)職業(yè)學(xué)院《金融市場(chǎng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度電網(wǎng)企業(yè)電力供應(yīng)保障供電合同范本3篇
- 根式方程換元法計(jì)算詳細(xì)過程解析A9
- 2024招投標(biāo)部門職責(zé)與權(quán)限調(diào)整服務(wù)合同3篇
- 2025年度環(huán)保型住宅小區(qū)建筑工程施工合同參考3篇
- 2024版公務(wù)員錄用與聘用合同
- 《液壓與氣動(dòng)技術(shù)》考試復(fù)習(xí)題庫(kù)(含答案)
- 四川省南充市2022-2023學(xué)年九年級(jí)上學(xué)期期末義務(wù)教育教學(xué)質(zhì)量檢測(cè)英語(yǔ)試題(含聽力)
- 全國(guó)教育科學(xué)規(guī)劃課題申報(bào)書:34.《高質(zhì)量數(shù)字教材建設(shè)研究》
- 高處作業(yè)風(fēng)險(xiǎn)及隱患排查(安全檢查)清單
- 五年級(jí)口算1000題(打印版)
- 團(tuán)意險(xiǎn)項(xiàng)目招標(biāo)書
- (郭伯良)兒童青少年同伴關(guān)系評(píng)級(jí)量表
- 煙道加強(qiáng)肋計(jì)算書(樣本)
- 登高平臺(tái)梯安全操作保養(yǎng)規(guī)程
- 土力學(xué)與地基基礎(chǔ)(課件)
- ERP沙盤模擬經(jīng)營(yíng)實(shí)訓(xùn)報(bào)告
評(píng)論
0/150
提交評(píng)論