2024學(xué)年山西省渾源縣數(shù)學(xué)高三上期末質(zhì)量檢測模擬試題含解析_第1頁
2024學(xué)年山西省渾源縣數(shù)學(xué)高三上期末質(zhì)量檢測模擬試題含解析_第2頁
2024學(xué)年山西省渾源縣數(shù)學(xué)高三上期末質(zhì)量檢測模擬試題含解析_第3頁
2024學(xué)年山西省渾源縣數(shù)學(xué)高三上期末質(zhì)量檢測模擬試題含解析_第4頁
2024學(xué)年山西省渾源縣數(shù)學(xué)高三上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年山西省渾源縣數(shù)學(xué)高三上期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時四面體的外接球的表面積為().A. B. C. D.3.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.124.有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.45.向量,,且,則()A. B. C. D.6.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為()A. B. C. D.7.集合,,則()A. B. C. D.8.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實(shí)數(shù)的取值為A.或11 B.或11 C. D.9.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.10.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.11.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿足條件的實(shí)數(shù)a,b12.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個不相等的實(shí)根,且這4個根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.14.已知函數(shù).若在區(qū)間上恒成立.則實(shí)數(shù)的取值范圍是__________.15.在平面直角坐標(biāo)系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點(diǎn)P,且點(diǎn)P關(guān)于直線x-y=0的對稱點(diǎn)Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.16.小李參加有關(guān)“學(xué)習(xí)強(qiáng)國”的答題活動,要從4道題中隨機(jī)抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)十八大以來,黨中央提出要在2020年實(shí)現(xiàn)全面脫貧,為了實(shí)現(xiàn)這一目標(biāo),國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財政提高了對“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn).提高了各項(xiàng)報銷的比例,其中門診報銷比例如下:表1:新農(nóng)合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計,李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費(fèi)用分別為50元、100元、200元、500元.若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次.(Ⅰ)李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實(shí)付費(fèi)用(報銷后個人應(yīng)承擔(dān)部分)的分布列與期望.18.(12分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時,求的周長.19.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點(diǎn),求的最大值.20.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對,恒有成立,求實(shí)數(shù)的最小值.21.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對一切,都有成立.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

通過變形,通過“左加右減”即可得到答案.【題目詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【題目點(diǎn)撥】本題主要考查三角函數(shù)的平移變換,難度不大.2、D【解題分析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【題目詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【題目點(diǎn)撥】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補(bǔ)形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.3、C【解題分析】

分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當(dāng)過點(diǎn)時,取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.4、A【解題分析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【題目詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【題目點(diǎn)撥】本小題主要考查正方體有關(guān)計算,屬于基礎(chǔ)題.5、D【解題分析】

根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【題目詳解】故選:D【題目點(diǎn)撥】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.6、B【解題分析】

由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個面的面積即可.【題目詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因?yàn)?,所以,所以,因?yàn)闉榈冗吶切危?所以該三棱錐的四個面中,最大面積為.故選:B【題目點(diǎn)撥】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運(yùn)算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.7、A【解題分析】

解一元二次不等式化簡集合A,再根據(jù)對數(shù)的真數(shù)大于零化簡集合B,求交集運(yùn)算即可.【題目詳解】由可得,所以,由可得,所以,所以,故選A.【題目點(diǎn)撥】本題主要考查了集合的交集運(yùn)算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.8、A【解題分析】

圓的圓心坐標(biāo)為(1,1),該圓心到直線的距離,結(jié)合弦長公式得,解得或,故選A.9、D【解題分析】

根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【題目詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【題目點(diǎn)撥】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.10、C【解題分析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.11、A【解題分析】

求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實(shí)數(shù).【題目詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實(shí)數(shù).故選:A【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡運(yùn)算能力,屬于中檔題.12、C【解題分析】

分四類情況進(jìn)行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【題目詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點(diǎn),即沒有零點(diǎn),所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點(diǎn)對稱,則中用代替,用代替,可得,所以④正確.故選:C【題目點(diǎn)撥】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

先確定關(guān)于x的方程當(dāng)a為何值時有4個不相等的實(shí)根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時這4個根的平方和存在最小值即可.【題目詳解】由題意,當(dāng)時,,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實(shí)根,舍;當(dāng)時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時有最小值,則對稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【題目點(diǎn)撥】本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.14、【解題分析】

首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【題目詳解】解:且,即解得,即因?yàn)樵趨^(qū)間上恒成立,解得即故答案為:【題目點(diǎn)撥】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.15、【解題分析】

設(shè)圓C1上存在點(diǎn)P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點(diǎn)求參數(shù)范圍.【題目詳解】設(shè)圓C1上存在點(diǎn)P(x0,y0)滿足題意,點(diǎn)P關(guān)于直線x-y=0的對稱點(diǎn)Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點(diǎn)即可,所以|r-1|≤≤r+1,解得.故答案為:【題目點(diǎn)撥】此題考查圓與圓的位置關(guān)系,其中涉及點(diǎn)關(guān)于直線對稱點(diǎn)問題,兩個圓有公共點(diǎn)的判定方式.16、【解題分析】

從四道題中隨機(jī)抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【題目詳解】由題:從從4道題中隨機(jī)抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【題目點(diǎn)撥】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準(zhǔn)確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解題分析】

(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進(jìn)而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結(jié)算的平均費(fèi)用及表1所報的百分比可得隨機(jī)變量的可能取值,再由概率可得的分布列,進(jìn)而求出概率.【題目詳解】解:(Ⅰ)由表2可得李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門診就診的人次中,60歲以上的人數(shù)為:人,設(shè)從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機(jī)變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.【題目點(diǎn)撥】本題主要考查互斥事件、隨機(jī)事件的概率計算公式、分布列及其數(shù)學(xué)期望、組合計算公式,考查了推理能力與計算能力,屬于中檔題.18、(1)(2)【解題分析】

(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時,最大,結(jié)合(1)中條件,即可求出最大時,對應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長.【題目詳解】(1)由,得,即.因?yàn)?,所?由,得.(2)因?yàn)椋?,?dāng)且僅當(dāng)時,等號成立.因?yàn)榈拿娣e.所以當(dāng)時,的面積取得最大值,此時,則,所以的周長為.【題目點(diǎn)撥】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力.19、(1),;(2)【解題分析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點(diǎn),點(diǎn)到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點(diǎn),則點(diǎn)到曲線的圓心的距離.∵,∴當(dāng)時,d有最大值.又∵P,Q分別為曲線,曲線上動點(diǎn),∴的最大值為.20、(1)(2)【解題分析】

(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【題目詳解】(1)因?yàn)樵谏蠁握{(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時,上式成立,當(dāng),有,需,而,,,,故綜上,實(shí)數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時,,不符合;當(dāng)即時,,符合當(dāng)即時,根據(jù)零點(diǎn)存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實(shí)數(shù)的最小值為【題目點(diǎn)撥】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于難題.21、(1)(2)((3)見證明【解題分析】

(1)先求函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論