廣西岑溪市2024學年高三數學第一學期期末聯考試題含解析_第1頁
廣西岑溪市2024學年高三數學第一學期期末聯考試題含解析_第2頁
廣西岑溪市2024學年高三數學第一學期期末聯考試題含解析_第3頁
廣西岑溪市2024學年高三數學第一學期期末聯考試題含解析_第4頁
廣西岑溪市2024學年高三數學第一學期期末聯考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西岑溪市2024學年高三數學第一學期期末聯考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數滿足(為虛數單位),則的值是()A. B. C. D.2.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.3.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.44.若為虛數單位,則復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數學水平,也印證了我國古代音律與歷法的密切聯系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數據(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年6.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則7.已知函數,方程有四個不同的根,記最大的根的所有取值為集合,則“函數有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.9.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.10.把函數圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.11.已知函數是上的偶函數,且當時,函數是單調遞減函數,則,,的大小關系是()A. B.C. D.12.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線上到其焦點的距離為的點的個數為________.14.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預防教育數字化網絡平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數分別是,則這五位同學答對題數的方差是____________.15.已知實數,滿足,則的最大值為______.16.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.18.(12分)已知都是大于零的實數.(1)證明;(2)若,證明.19.(12分)已知分別是內角的對邊,滿足(1)求內角的大小(2)已知,設點是外一點,且,求平面四邊形面積的最大值.20.(12分)已知函數.(1)討論的零點個數;(2)證明:當時,.21.(12分)誠信是立身之本,道德之基,我校學生會創(chuàng)設了“誠信水站”,既便于學生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數據分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數據統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數;(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據已有數據,說明兩次主題教育活動的宣傳效果,并根據已有數據陳述理由.22.(10分)已知等差數列{an}的前n項和為Sn,且(1)求數列{a(2)求數列{1Sn}的前

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

直接利用復數的除法的運算法則化簡求解即可.【題目詳解】由得:本題正確選項:【題目點撥】本題考查復數的除法的運算法則的應用,考查計算能力.2、B【解題分析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【題目詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【題目點撥】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.3、C【解題分析】

將直線方程代入拋物線方程,根據根與系數的關系和拋物線的定義即可得出的值.【題目詳解】F(1,0),故直線AB的方程為y=x﹣1,聯立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【題目點撥】本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.4、D【解題分析】

根據復數的運算,化簡得到,再結合復數的表示,即可求解,得到答案.【題目詳解】由題意,根據復數的運算,可得,所對應的點為位于第四象限.故選D.【題目點撥】本題主要考查了復數的運算,以及復數的幾何意義,其中解答中熟記復數的運算法則,準確化簡復數為代數形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、D【解題分析】

先理解題意,然后根據題意建立平面幾何圖形,在利用三角函數的知識計算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項.【題目詳解】解:由題意,可設冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計該骨笛的大致年代早于公元前6000年.故選:.【題目點撥】本題考查利用三角函數解決實際問題的能力,運用了兩角和與差的正切公式,考查了轉化思想,數學建模思想,以及數學運算能力,屬中檔題.6、C【解題分析】

根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【題目詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【題目點撥】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.7、A【解題分析】

作出函數的圖象,得到,把函數有零點轉化為與在(2,4]上有交點,利用導數求出切線斜率,即可求得的取值范圍,再根據充分、必要條件的定義即可判斷.【題目詳解】作出函數的圖象如圖,由圖可知,,函數有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數有兩個零點”是“”的充分不必要條件,故選A.【題目點撥】本題主要考查了函數零點的判定,考查數學轉化思想方法與數形結合的解題思想方法,訓練了利用導數研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.8、B【解題分析】

利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【題目詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【題目點撥】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.9、B【解題分析】

先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【題目詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【題目點撥】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.10、D【解題分析】

試題分析:把函數圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數的圖象與性質.11、D【解題分析】

利用對數函數的單調性可得,再根據的單調性和奇偶性可得正確的選項.【題目詳解】因為,,故.又,故.因為當時,函數是單調遞減函數,所以.因為為偶函數,故,所以.故選:D.【題目點撥】本題考查抽象函數的奇偶性、單調性以及對數函數的單調性在大小比較中的應用,比較大小時注意選擇合適的中間數來傳遞不等關系,本題屬于中檔題.12、B【解題分析】

求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【題目詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.【題目點撥】本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

設拋物線上任意一點的坐標為,根據拋物線的定義求得,并求出對應的,即可得出結果.【題目詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數為.故答案為:.【題目點撥】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.14、2【解題分析】

由這五位同學答對的題數分別是,得該組數據的平均數,則方差.15、【解題分析】

畫出不等式組表示的平面區(qū)域,將目標函數理解為點與構成直線的斜率,數形結合即可求得.【題目詳解】不等式組表示的平面區(qū)域如下所示:因為可以理解為點與構成直線的斜率,數形結合可知,當且僅當目標函數過點時,斜率取得最大值,故的最大值為.故答案為:.【題目點撥】本題考查目標函數為斜率型的規(guī)劃問題,屬基礎題.16、【解題分析】

根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【題目詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【題目點撥】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解題分析】

(1)由已知可證,即可證明結論;(2)根據已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【題目詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【題目點撥】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數學運算的數學核心素養(yǎng),屬于中檔題.18、(1)答案見解析.(2)答案見解析【解題分析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【題目詳解】(1)兩式相加得(2)由(1)知于是,.【題目點撥】本題考查了基本不等式的應用,屬于基礎題.19、(1)(2)【解題分析】

(1)首先利用誘導公式及兩角和的余弦公式得到,再由同角三角三角的基本關系得到,即可求出角;(2)由(1)知,是正三角形,設,由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數的性質求得最大值;【題目詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設,由余弦定理得:,,,所以當時有最大值【題目點撥】本題考查同角三角函數的基本關系,三角恒等變換公式的應用,三角形面積公式的應用,以及正弦函數的性質,屬于中檔題.20、(1)見解析(2)見解析【解題分析】

(1)求出,分別以當,,時,結合函數的單調性和最值判斷零點的個數.(2)令,結合導數求出;同理可求出滿足,從而可得,進而證明.【題目詳解】解析:(1),,當時,,單調遞減,,,此時有1個零點;當時,無零點;當時,由得,由得,∴在單調遞減,在單調遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當時,;當時,,∴.令,則,當時,,當時,,∴,∴,,∴,即.【題目點撥】本題考查了導數判斷函數零點問題,考查了運用導數證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論