![2024屆貴州省烏江中學高三數(shù)學第一學期期末調研模擬試題含解析_第1頁](http://file4.renrendoc.com/view/519cb0426b459b10659df5f622254f6b/519cb0426b459b10659df5f622254f6b1.gif)
![2024屆貴州省烏江中學高三數(shù)學第一學期期末調研模擬試題含解析_第2頁](http://file4.renrendoc.com/view/519cb0426b459b10659df5f622254f6b/519cb0426b459b10659df5f622254f6b2.gif)
![2024屆貴州省烏江中學高三數(shù)學第一學期期末調研模擬試題含解析_第3頁](http://file4.renrendoc.com/view/519cb0426b459b10659df5f622254f6b/519cb0426b459b10659df5f622254f6b3.gif)
![2024屆貴州省烏江中學高三數(shù)學第一學期期末調研模擬試題含解析_第4頁](http://file4.renrendoc.com/view/519cb0426b459b10659df5f622254f6b/519cb0426b459b10659df5f622254f6b4.gif)
![2024屆貴州省烏江中學高三數(shù)學第一學期期末調研模擬試題含解析_第5頁](http://file4.renrendoc.com/view/519cb0426b459b10659df5f622254f6b/519cb0426b459b10659df5f622254f6b5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆貴州省烏江中學高三數(shù)學第一學期期末調研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.2.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1803.設集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}4.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.5.已知向量,,若,則()A. B. C. D.6.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.67.執(zhí)行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.8.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.9.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.8410.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位11.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或512.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F(xiàn)分別為,的中點,,則球O的體積為______.14.過點,且圓心在直線上的圓的半徑為__________.15.已知函數(shù),則曲線在點處的切線方程為___________.16.假設10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.18.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87919.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.20.(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.21.(12分)在直角坐標平面中,已知的頂點,,為平面內的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.22.(10分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當時,求的值;利用數(shù)學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】試題分析:由,得,則,故選D.考點:1、復數(shù)的運算;2、復數(shù)的模.2、A【解題分析】
因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【題目詳解】,,.故選:A.【題目點撥】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.3、C【解題分析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【題目詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【題目點撥】本題主要考查集合的交集運算,屬于基礎題.4、B【解題分析】
設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心率公式求解即可.【題目詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【題目點撥】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.5、A【解題分析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【題目詳解】由題意得,,,,解得.故選A.【題目點撥】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.6、B【解題分析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結果.【題目詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【題目點撥】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.7、D【解題分析】循環(huán)依次為直至結束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環(huán)結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環(huán)結構、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.8、D【解題分析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).9、D【解題分析】
利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【題目詳解】,解得..故選:D【題目點撥】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.10、D【解題分析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個長度單位得到,故選D11、B【解題分析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【題目詳解】由于,所以,又且,故選:B.【題目點撥】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎題.12、C【解題分析】
由正項等比數(shù)列滿足,即,又,即,運算即可得解.【題目詳解】解:因為,所以,又,所以,又,解得.故選:C.【題目點撥】本題考查了等比數(shù)列基本量的求法,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【題目詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:【題目點撥】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.14、【解題分析】
根據(jù)弦的垂直平分線經過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【題目詳解】因為圓經過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【題目點撥】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.15、【解題分析】
根據(jù)導數(shù)的幾何意義求出切線的斜率,利用點斜式求切線方程.【題目詳解】因為,所以,又故切線方程為,整理為,故答案為:【題目點撥】本題主要考查了導數(shù)的幾何意義,切線方程,屬于容易題.16、【解題分析】
分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【題目詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【題目點撥】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)1【解題分析】
(1)選②,③.可得,結合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【題目詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當時,有最大值1.【題目點撥】本題考查了正余弦定理,三角三角恒等變形,考查了計算能力,屬于中檔題.18、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解題分析】
(1)根據(jù)題意,結合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結合分布列即可求得數(shù)學期望.【題目詳解】(1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結合列聯(lián)表可算得.有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【題目點撥】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數(shù)學期望,涉及分層抽樣,屬綜合性中檔題.19、(Ⅰ)見解析;(Ⅱ)【解題分析】
(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設,則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【題目詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.【題目點撥】本題主要考查線面垂直的判定定理,線面角的應用,還考查了轉化化歸的思想和空間想象運算求解的能力,屬于中檔題.20、(1);(2)【解題分析】
(1)消去參數(shù),將圓的參數(shù)方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能化工廠項目用工合同范本
- 2025年度大型體育賽事賽事運營管理合同
- 2025年度物業(yè)服務質量評估與改進合同
- 辭職申請書500字
- 酒店入職申請書
- 破產申請書范本
- 2025年度供用熱合同范本:綠色建筑項目供熱設施安裝與維護合同
- 2025年度新型城鎮(zhèn)化項目小產權房購房合同示范文本
- 電力安全事故的預防與應急處理
- 2025年度新能源汽車租賃與充電網絡建設合同
- 贏在團隊執(zhí)行力課件
- 慢性胰腺炎課件
- 北京理工大學應用光學課件第四章
- 陰道鏡幻燈課件
- 2022年山東司法警官職業(yè)學院單招語文試題及答案解析
- PCB行業(yè)安全生產常見隱患及防范措施課件
- DB32∕T 186-2015 建筑消防設施檢測技術規(guī)程
- 2022年福建泉州中考英語真題【含答案】
- 汽車座椅骨架的焊接夾具畢業(yè)設計說明書(共23頁)
- 露天礦山職業(yè)危害預先危險分析表
- 淺談固定資產的審計
評論
0/150
提交評論