




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
高一數學側面積應用第一頁,共七十六頁,編輯于2023年,星期六教學過程教學要求導入新課例題講解能力測試講解新課第二頁,共七十六頁,編輯于2023年,星期六教學要求請選擇要跳轉屏號:第一屏第二屏第三屏第四屏第三頁,共七十六頁,編輯于2023年,星期六知識目標能用圓柱圓錐、圓臺側面積公
式解決有關問題。使學生理解并掌握圓柱、圓錐、圓臺側面積公式及其推導過程第四頁,共七十六頁,編輯于2023年,星期六培養(yǎng)學生空間想象能力、運算能力和應用知識能力能力目標第五頁,共七十六頁,編輯于2023年,星期六滲透等價轉化思想思想目標第六頁,共七十六頁,編輯于2023年,星期六重點與難點重點:圓柱、圓錐、圓臺側面積公式難點:圓柱、圓錐、圓臺側面積公式的應用第七頁,共七十六頁,編輯于2023年,星期六重點與難點重點:圓柱、圓錐、圓臺側面積公式難點:圓柱、圓錐、圓臺側面積公式的應用本節(jié)學習已經結束請注意!第八頁,共七十六頁,編輯于2023年,星期六導入新課請選擇要跳轉屏號:第一屏第二屏第三屏第九頁,共七十六頁,編輯于2023年,星期六1。敘述圓柱、圓錐、圓臺的定義。
第十頁,共七十六頁,編輯于2023年,星期六(1)。平行于底面的截面是圓面2。圓柱、圓錐、圓臺有何性質?第十一頁,共七十六頁,編輯于2023年,星期六(2)。過軸的截面分別是全等的矩形、等腰三角形、等腰梯形A1BBAAABA1B1B1S2。圓柱、圓錐、圓臺有何性質?第十二頁,共七十六頁,編輯于2023年,星期六上底擴大上底縮小S直棱柱=ch
S正棱臺=(c+c’)h’S正棱錐=ch’c’=cc’=012123。棱柱、棱錐、棱臺的側面積公式分別為什么?它們之間有何關系?第十三頁,共七十六頁,編輯于2023年,星期六上底擴大上底縮小S直棱柱=ch
S正棱臺=(c+c’)h’S正棱錐=ch’c’=cc’=01212本節(jié)學習已經結束!請注意!3。棱柱、棱錐、棱臺的側面積公式分別為什么?它們之間有何關系?第十四頁,共七十六頁,編輯于2023年,星期六講解新課請選擇要跳轉屏號:第一屏第二屏第三屏第四屏第五屏第六屏第十五頁,共七十六頁,編輯于2023年,星期六把圓柱、圓錐、圓臺的側面沿著一條母線剪開后展在平面上,展開圖的面積就叫做它們的側面積。問題:
什么是圓柱、圓錐、圓臺的側面積?第十六頁,共七十六頁,編輯于2023年,星期六圓柱、圓錐、圓臺的側面展開圖形狀分別為矩形、扇形和扇環(huán)。圓柱、圓錐、圓臺的側面展開圖形狀分別是什么?思考:第十七頁,共七十六頁,編輯于2023年,星期六定理1:如果圓柱的底面半徑是r,周長是c,側面母線長是l,那么它的側面積是S側面積=cl=2∏rllr第十八頁,共七十六頁,編輯于2023年,星期六lr定理1:如果圓柱的底面半徑是r,周長是c,側面母線長是l,那么它的側面積是S側面積=cl=2∏rl第十九頁,共七十六頁,編輯于2023年,星期六證明:∵圓柱的側面展開圖是矩形,它的一邊長是底面邊長2∏r,另一邊長為圓柱母線l∴S側面積=cl=2∏rl定理1:如果圓柱的底面半徑是r,周長是c,側面母線長是l,那么它的側面積是S側面積=cl=2∏rl作圓柱的側面展開圖lr側面展開圖2∏rlr第二十頁,共七十六頁,編輯于2023年,星期六
定理2:如果圓錐的底面半徑是r,周長是c,母線長是l,展開圖圓心角為,求證:(2).=360(度)rl
(1).S側面積=cl=∏rl12l第二十一頁,共七十六頁,編輯于2023年,星期六l
定理2:如果圓錐的底面半徑是r,周長是c,母線長是l,展開圖圓心角為,求證:(2).=360(度)rl
(1).S側面積=cl=∏rl12第二十二頁,共七十六頁,編輯于2023年,星期六證明:∏rl∵圓錐的側面展開圖是扇形,它的弧長是底面周長2∏r,半徑為圓錐母線l,圓心角為∴S側面積=S扇形(1)=
cl12=
定理2:如果圓錐的底面半徑是r,周長是c,母線長是l,展開圖圓心角為,求證:(2).=360(度)rl
(1).S側面積=cl=∏rl12l作圓錐的側面展開圖第二十三頁,共七十六頁,編輯于2023年,星期六(2)∵扇形的弧長是底面周長clr展開圖∏l180rl360(度)∴2∏r=∴=
定理2:如果圓錐的底面半徑是r,周長是c,母線長是l,展開圖圓心角為,求證:(2).=360(度)rl
(1).S側面積=cl=∏rl12l第二十四頁,共七十六頁,編輯于2023年,星期六定理3:如果圓臺的上、下底面半徑是r’、r,周長是c’、c,側面母線長是l,那么它的側面積是:S側面積=(c’+c)l=∏(r’+r)l12第二十五頁,共七十六頁,編輯于2023年,星期六定理3:如果圓臺的上、下底面半徑是r’、r,周長是c’、c,側面母線長是l,那么它的側面積是:S側面積
=(c’+c)l=∏(r’+r)l12第二十六頁,共七十六頁,編輯于2023年,星期六證明:將圓臺補成圓錐.
cl+(c-c’)x1212又∵=c’cX+l
X∴x=c’lc-c’1212c(l+x)—c’x∴S側面積==定理3:如果圓臺的上、下底面半徑是r’、r,周長是c’、c,側面母線長是l,那么它的側面積是:S側面積
=(c’+c)l=∏(r’+r)l12
作其側面展開圖,設OA=x第二十七頁,共七十六頁,編輯于2023年,星期六12〔cl+(c-c’)〕c’lc-c’12=(c+c’)l=∏(r+r’)l∴S側面積=定理3:如果圓臺的上、下底面半徑是r’、r,周長是c’、c,側面母線長是l,那么它的側面積是:S側面積
=(c’+c)l=∏(r’+r)l12第二十八頁,共七十六頁,編輯于2023年,星期六clrc’AOB12〔cl+(c-c’)〕c’lc-c’12=(c+c’)l=∏(r+r’)l∴S側面積=r’定理3:如果圓臺的上、下底面半徑是r’、r,周長是c’、c,側面母線長是l,那么它的側面積是:S側面積
=(c’+c)l=∏(r’+r)l12解法小結(1)在解決臺體的有關計算和證明問題時,往往將臺體補成錐體,利用錐體的有關性質尋找解題途徑。第二十九頁,共七十六頁,編輯于2023年,星期六圓柱、圓錐、圓臺形狀不同,側面積公式也不同,它們之間雖有區(qū)別,但可以互相轉化。課堂小結(一)c’=0c’=cS側面積=cl=∏rlS側面積=(c
’+c)l=∏(r
’+r)l12S側面積=cl=2∏rl12圓柱、圓錐、圓臺側面積公式之間關系:第三十頁,共七十六頁,編輯于2023年,星期六圓柱、圓錐、圓臺形狀不同,側面積公式也不同,它們之間雖有區(qū)別,但可以互相轉化。課堂小結(一)c’=0c’=cS側面積=cl=∏rlS側面積=(c
’+c)l=∏(r
’+r)l12S側面積=cl=2∏rl12圓柱、圓錐、圓臺側面積公式之間關系:本節(jié)學習已經結束!請注意!第三十一頁,共七十六頁,編輯于2023年,星期六例題講解請選擇要跳轉屏號:第二屏第一屏第四屏第三屏第三十二頁,共七十六頁,編輯于2023年,星期六例1:一個圓臺的上、下底面半徑分別是3、6,母線與底面成60角,求圓臺的側面積ABA1B136第三十三頁,共七十六頁,編輯于2023年,星期六ABA1B136解:作圓臺的軸截面AA1B1B,則AA1B1B是等腰梯形,且ABB1=60=6過點B1作B1C⊥AB∴BC=6-33=在直角三角形A1BC中B1B==3÷
BCcos6012600例1:一個圓臺的上、下底面半徑分別是3、6,母線與底面成60角,求圓臺的側面積6ABA1B13C第三十四頁,共七十六頁,編輯于2023年,星期六∴圓臺的側面積為:
S側面積=∏(r’+r)l=(3+6)×6∏=54∏∴圓臺的側面積為54∏例1:一個圓臺的上、下底面半徑分別是3、6,母線與底面成60角,求圓臺的側面積6ABA1B13C第三十五頁,共七十六頁,編輯于2023年,星期六6ABA1B13C∴圓臺的側面積為:
S側面積=∏(r’+r)l=(3+6)×6∏=54∏∴圓臺的側面積為54∏例1:一個圓臺的上、下底面半徑分別是3、6,母線與底面成60角,求圓臺的側面積解法小結(2)通過軸截面將旋轉體的有關問題轉化為平面幾何問題是立體幾何中解決空間問題常用方法之一。第三十六頁,共七十六頁,編輯于2023年,星期六rl例2.已知圓錐的底面半徑為OA=10cm,母線VA=40cm,由點A繞側面一周的最短線的長度是多少?OVVAAA’AO第三十七頁,共七十六頁,編輯于2023年,星期六rl例2.已知圓錐的底面半徑為OA=10cm,母線VA=40cm,由點A繞側面一周的最短線的長度是多少?VVAAA’AO解:
沿圓錐母線AA’將圓錐側面展開,則所求最短距離就是圓錐的側面展開圖中連接點A和點A’的線段AA
’。設圓錐側面展開圖扇形VAA’的圓心角為第三十八頁,共七十六頁,編輯于2023年,星期六rl例2.已知圓錐的底面半徑為OA=10cm,母線VA=40cm,由點A繞側面一周的最短線的長度是多少?OVVAAA’AO∴=×3600=900OAVA∴AA’=√VA2+VA’
2=∴所求最短線的長度為40√2cm。√402+402
=40√2第三十九頁,共七十六頁,編輯于2023年,星期六返回繼續(xù)前一屏旋轉重復rl例2.已知圓錐的底面半徑為OA=10cm,母線VA=40cm,由點A繞側面一周的最短線的長度是多少?O返回繼續(xù)前一屏旋轉重復VVAAA’AO∴=×3600=900OAVA∴AA’=√VA2+VA’2=∴所求最短線的長度為40√2cm?!?02+402
=40√2解法小結(3)對可展面來說,求曲面上兩點之間最短距離的基本方法是作出其側面展開圖,將空間問題轉化為平面問題,再利用平幾知識求解。第四十頁,共七十六頁,編輯于2023年,星期六例2例3:已知一個圓錐的底面半徑為R,高為H,在其中有一個高為x的內接圓柱,(1)求圓柱的側面積;(2)當x為何值時,圓柱的側面積最大?HxR第四十一頁,共七十六頁,編輯于2023年,星期六HxR解:(1)畫圓錐及內接圓柱的軸截面,設所求的圓柱的底面半徑為r∴S圓柱側=2∏rx∵=rH-xRH∴r=R-xRH∴S圓柱側=2∏rx=2∏Rx-x22∏RHHrxR例3:已知一個圓錐的底面半徑為R,高為H,在其中有一個高為x的內接圓柱,(1)求圓柱的側面積;(2)當x為何值時,圓柱的側面積最大?第四十二頁,共七十六頁,編輯于2023年,星期六(2)∵S圓柱側的表達式中x2
的系數小于零2∏RH∴這個二次函數有最大值,這時圓柱的高是x=2∏R-2×=H2∴當圓柱的高為圓錐的高的一半時,它的側面積最大。例3:已知一個圓錐的底面半徑為R,高為H,在其中有一個高為x的內接圓柱,(1)求圓柱的側面積;(2)當x為何值時,圓柱的側面積最大?HrxR第四十三頁,共七十六頁,編輯于2023年,星期六HrxR例3:已知一個圓錐的底面半徑為R,高為H,在其中有一個高為x的內接圓柱,(1)求圓柱的側面積;(2)當x為何值時,圓柱的側面積最大?(2)∵S圓柱側的表達式中x2
的系數小于零2∏RH∴這個二次函數有最大值,這時圓柱的高是x=2∏R-2×=H2∴當圓柱的高為圓錐的高的一半時,它的側面積最大。解法小結(4)解決內接幾何體問題的基本途徑是作出相關的軸截面。要注意弄清軸截面與內接幾何體的位置關系。第四十四頁,共七十六頁,編輯于2023年,星期六解決本節(jié)問題的基本思想是化歸思想,基本方法有3種:課堂小結(二)(1)、補錐成臺(2)、作軸截面(3)、作側面展開圖第四十五頁,共七十六頁,編輯于2023年,星期六解決本節(jié)問題的基本思想是化歸思想,基本方法有下列3種:課堂小結(二)(1)、補錐成臺(2)、作軸截面(3)、作側面展開圖本節(jié)學習已經結束請注意!第四十六頁,共七十六頁,編輯于2023年,星期六請選擇要跳轉屏號:第一屏能力測試第二屏第三屏第四屏第六屏第七屏第五屏第八屏第四十七頁,共七十六頁,編輯于2023年,星期六3Q1.圓柱的軸截面是正方形,其面積為Q,那么圓柱的側面積為:A2QBC∏QD2∏Q選擇題第四十八頁,共七十六頁,編輯于2023年,星期六選擇題1.圓柱的軸截面是正方形,其面積為Q,那么圓柱的側面積為:A2QBC∏QD2∏Q3Q您選擇的答案不對!提示…
!第四十九頁,共七十六頁,編輯于2023年,星期六1.圓柱的軸截面是正方形,其面積為Q,那么圓柱的側面積為:C∏QD2∏QA2QB3Q您做對了!祝賀您!☆選擇題第五十頁,共七十六頁,編輯于2023年,星期六zn1.復數z對應的向量為OZ將向量OZ的模伸長為原來的n倍,所得向量對應復數為:AzBCnzD不確定怎樣求解此題?設圓柱的半徑為r,則母線長為
2r,軸截面面積為2r×2r=Q,即4r=Q,所以S圓柱側=2∏r×2r=4r∏=∏Q。22選擇題第五十一頁,共七十六頁,編輯于2023年,星期六A12cm2。一個半徑為15cm,圓心角為216的扇形卷成一個圓錐的側面,則圓錐的高為:B14cmC13cmD15cm選擇題第五十二頁,共七十六頁,編輯于2023年,星期六A14cm2。一個半徑為15cm,圓心角為216的扇形卷成一個圓錐的側面,則圓錐的高為:B12cmC13cmD15cm您選擇的答案不對!提示…
!選擇題第五十三頁,共七十六頁,編輯于2023年,星期六A14cm2。一個半徑為15cm,圓心角為216的扇形卷成一個圓錐的側面,則圓錐的高為:B12cmC13cmD15cm您做對了!祝賀您!☆選擇題第五十四頁,共七十六頁,編輯于2023年,星期六A1502。將z=sin300-icos300所對應的向量按逆時針方向旋轉時,所得向量對應復數為i,則為:B-150C120D-120怎樣求解此題?這里15cm是圓錐母線長,由
×360=216,得r=9,則圓錐的高有h=√152-92=12r15選擇題第五十五頁,共七十六頁,編輯于2023年,星期六
3.若圓臺的軸截面面積為Q,母線與底面成300角,則圓臺的側面積為:C2∏QA∏QB∏QD4∏Q12選擇題第五十六頁,共七十六頁,編輯于2023年,星期六
3.若圓臺的軸截面面積為Q,母線與底面成300角,則圓臺的側面積為:C2∏QA∏QB∏QD4∏Q12您選擇的答案不對!提示…
!選擇題第五十七頁,共七十六頁,編輯于2023年,星期六
3.若圓臺的軸截面面積為Q,母線與底面成300角,則圓臺的側面積為:C2∏QA∏QB∏QD4∏Q12您做對了!祝賀您!☆選擇題第五十八頁,共七十六頁,編輯于2023年,星期六C2∏QA∏QB∏QD4∏Q12
3.若圓臺的軸截面面積為Q,母線與底面成300角,則圓臺的側面積為:怎樣求解此題?設圓臺上下底半徑分別為R、r,高為h.,母線長為l,則l=2h,且Q=×h=(R+r)h2R+2r2S側面積==∏(R+r)l=2∏(R+r)h=2∏Q選擇題第五十九頁,共七十六頁,編輯于2023年,星期六4。圓柱的底面半徑為2,軸截面對角線長為5,則這個圓柱側面展開圖的對角線長為:A5C√16∏2+9B5∏D√9∏2+16選擇題第六十頁,共七十六頁,編輯于2023年,星期六A5C√16∏2+9B5∏D√9∏2+164。圓柱的底面半徑為2,軸截面對角線長為5,則這個圓柱側面展開圖的對角線長為:您選擇的答案不對!提示…
!選擇題第六十一頁,共七十六頁,編輯于2023年,星期六4。圓柱的底面半徑為2,軸截面對角線長為5,則這個圓柱側面展開圖的對角線長為:A5C√16∏2+9B5∏D√9∏2+16您做對了!☆祝賀您!選擇題第六十二頁,共七十六頁,編輯于2023年,星期六A5C√16∏2+9B5∏D√9∏2+164。圓柱的底面半徑為2,軸截面對角線長為5,則這個圓柱側面展開圖的對角線長為:怎樣求解此題?本題先通過圓柱的軸截面求出圓柱的母線長,然后根據圓柱的側面展開圖是矩形這一性質,運用勾股定理求解。選擇題第六十三頁,共七十六頁,編輯于2023年,星期六填空題15。將半徑為l的簿鐵圓板沿三條半徑截成三個全等的扇形,做成三個圓錐筒(無底),則圓錐筒的高為rrr第六十四頁,共七十六頁,編輯于2023年,星期六填空題15。將半徑為l的簿鐵圓板沿三條半徑截成三個全等的扇形,做成三個圓錐筒(無底),則圓錐筒的高為rrr2√2l3第六十五頁,共七十六頁,編輯于2023年,星期六填空題15。將半徑為l的簿鐵圓板沿三條半徑截成三個全等的扇形,做成三個圓錐筒(無底),則圓錐筒的高為rrr怎樣求解此題?由題意,所得圓錐的側面展開圖半徑是l,圓心角1200。所以,120=×360,即,r=l,因此圓錐的高為√l2-r2=√2l1323rl第六十六頁,共七十六頁,編輯于2023年,星期六6.一個直角梯形的上、下底和高的比為1:2:√,則由它旋轉而成的圓臺的上底面積、下底面積和側面積的比為填空題13ABA1B1O1O第六十七頁,共七十六頁,編輯于2023年,星期六6.一個直角梯形的上、下底和高的比為1:2:√,則由它旋轉而成的圓臺的上底面積、下底面積和側面積的比為填空題13ABA1B1O1O1:4:6∏第六十八頁,共七十六頁,編輯于2023年,星期六6.一個直角梯形的上、下底和高的比為1:2:√,則由它旋轉而成的圓臺的上底面積、下底面積和側面積的比為填空題13ABA1B1O1O怎樣求解此題?設直角梯形上、下底和高分別為r、R、h,母線為l,則r:R:h:l=1:2:√3:2,設r=k,R=2k,L=2k,所以,上底面積、下底面積和側面積之比為1:4:6∏。第六十九頁,共七十六頁,編輯于2023年
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人土地無償贈與合同范本
- 個人家政保潔合同范本
- 制定合同范本 作用
- fidic條件合同范本
- 買賣延期合同范本
- 醫(yī)用機甲租賃合同范本
- 凈水設備售賣合同范本
- 勞動合同范本藥店
- 出租和諧公寓合同范本
- 修建垃圾臺合同范本
- 2024年山東交通職業(yè)學院高職單招語文歷年參考題庫含答案解析
- 萬兆小區(qū)方案及實施路徑
- 2025年高壓電工作業(yè)考試國家總局題庫及答案(共280題)
- 初中圖書室閱覽室建設實施方案范文(2篇)
- 印刷公司生產部2025年年度工作總結及2025年工作計劃
- 2025年中考語文一輪復習:八年級下冊知識點梳理
- 小班孵雞蛋課程設計
- 糖尿病的麻醉管理
- 《商務溝通-策略、方法與案例》課件 第四章 非言語溝通
- 2024-2025學年度七年級上冊數學期末實際問題應用題-盈虧問題提升訓練含答案
- 附件2:福建省建設工程造價咨詢服務收費指導價
評論
0/150
提交評論