高中數(shù)學必修1知識點總結_第1頁
高中數(shù)學必修1知識點總結_第2頁
高中數(shù)學必修1知識點總結_第3頁
高中數(shù)學必修1知識點總結_第4頁
高中數(shù)學必修1知識點總結_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

高中數(shù)學必修1知識點總結高中數(shù)學必修1知識點總結全文共10頁,當前為第1頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第1頁。知識的總結總是必要的,那么高中數(shù)學必修1的知識點同學們總結過嗎,如果還沒有來得及,就小編這里瞧瞧吧。下面是由小編為大家整理的“高中數(shù)學必修1知識點總結”,僅供參考,歡迎大家閱讀。高中數(shù)學必修1知識點總結一:集合的含義與表示1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。2、集合的中元素的三個特性:(1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。(2)元素的互異性:一個給定集合中的元素是的,不可重復的。(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合3、集合的表示:{…}(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。a、列舉法:將集合中的元素一一列舉出來{a,b,c……}b、描述法:①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。{xR|x-3>2},{x|x-3>2}②語言描述法:例:{不是直角三角形的三角形}③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。4、集合的分類:(1)有限集:含有有限個元素的集合(2)無限集:含有無限個元素的集合高中數(shù)學必修1知識點總結全文共10頁,當前為第2頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第2頁。5、元素與集合的關系:(1)元素在集合里,則元素屬于集合,即:aA(2)元素不在集合里,則元素不屬于集合,即:a¢A注意:常用數(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R6、集合間的基本關系(1).“包含”關系(1)—子集定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集。二、函數(shù)的概念函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么就稱f:A---B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;(2)與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.函數(shù)的三要素:定義域、值域、對應法則函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。(3)列表法:選取的自變量要有代表性,可以反應定義域的特征。4、函數(shù)圖象知識歸納(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)高中數(shù)學必修1知識點總結全文共10頁,當前為第3頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第3頁。(2)畫法A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。(3)函數(shù)圖像平移變換的特點:1)加左減右——————只對x2)上減下加——————只對y3)函數(shù)y=f(x)關于X軸對稱得函數(shù)y=-f(x)4)函數(shù)y=f(x)關于Y軸對稱得函數(shù)y=f(-x)5)函數(shù)y=f(x)關于原點對稱得函數(shù)y=-f(-x)6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得函數(shù)y=|f(x)|7)函數(shù)y=f(x)先作x≥0的圖像,然后作關于y軸對稱的圖像得函數(shù)f(|x|)三、函數(shù)的基本性質(zhì)1、函數(shù)解析式子的求法(1、函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.(2、求函數(shù)的解析式的主要方法有:1)代入法:2)待定系數(shù)法:3)換元法:4)拼湊法:2.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;高中數(shù)學必修1知識點總結全文共10頁,當前為第4頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第4頁。(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零,(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.3、相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致(兩點必須同時具備)4、區(qū)間的概念:(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示5、值域(先考慮其定義域)(1)觀察法:直接觀察函數(shù)的圖像或函數(shù)的解析式來求函數(shù)的值域;(2)反表示法:針對分式的類型,把Y關于X的函數(shù)關系式化成X關于Y的函數(shù)關系式,由X的范圍類似求Y的范圍。(3)配方法:針對二次函數(shù)的類型,根據(jù)二次函數(shù)圖像的性質(zhì)來確定函數(shù)的值域,注意定義域的范圍。(4)代換法(換元法):作變量代換,針對根式的題型,轉化成二次函數(shù)的類型。6.分段函數(shù)(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。(2)各部分的自變量的取值情況.(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.(4)常用的分段函數(shù)有取整函數(shù)、符號函數(shù)、含絕對值的函數(shù)7.映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A---B為從集合A到集合B的一個映射。高中數(shù)學必修1知識點總結全文共10頁,當前為第5頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第5頁。對于映射f:A→B來說,則應滿足:(1)集合A中的每一個元素,在集合B中都有象,并且象是的;(2)集合A中不同的元素,在集合B中對應的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。注意:映射是針對自然界中的所有事物而言的,而函數(shù)僅僅是針對數(shù)字來說的。所以函數(shù)是映射,而映射不一定的函數(shù)8、函數(shù)的單調(diào)性(局部性質(zhì))及最值(1、增減函數(shù)(1)設函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1(2)如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種(2、圖象的特點如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3、函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:任取x1,x2∈D,且x1作差f(x1)-f(x2);變形(通常是因式分解和配方);定號(即判斷差f(x1)-f(x2)的正負);下結論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).(B)圖象法(從圖象上看升降)(C)復合函數(shù)的單調(diào)性復合函數(shù):如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。復合函數(shù)f[g(x)]的單調(diào)性與構成它的函數(shù)u=g(x),y=f(u)的單調(diào)高中數(shù)學必修1知識點總結全文共10頁,當前為第6頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第6頁。注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.9:函數(shù)的奇偶性(整體性質(zhì))(1、偶函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).(2、奇函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).(3、具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.利用定義判斷函數(shù)奇偶性的步驟:a、首先確定函數(shù)的定義域,并判斷其是否關于原點對稱;若是不對稱,則是非奇非偶的函數(shù);若對稱,則進行下面判斷;b、確定f(-x)與f(x)的關系;c、作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).(4)利用奇偶函數(shù)的四則運算以及復合函數(shù)的奇偶性a、在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);a、復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇。注意:函數(shù)定義域關于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;高中數(shù)學必修1知識點總結全文共10頁,當前為第7頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第7頁。10、函數(shù)最值及性質(zhì)的應用(1、函數(shù)的最值a利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值b利用圖象求函數(shù)的(小)值c利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);(2、函數(shù)的奇偶性與單調(diào)性奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調(diào)性。(3、判斷含糊單調(diào)性時也可以用作商法,過程與作差法類似,區(qū)別在于作差法是與0作比較,作商法是與1作比較。(4)絕對值函數(shù)求最值,先分段,再通過各段的單調(diào)性,或圖像求最值。(5)在判斷函數(shù)的奇偶性時候,若已知是奇函數(shù)可以直接用f(0)=0,但是f(0)=0并不一定可以判斷函數(shù)為奇函數(shù)。(高一階段可以利用奇函數(shù)f(0)=0)?!酒糠匠痰母c函數(shù)的零點1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點.3、函數(shù)零點的求法:(1)(代數(shù)法)求方程的實數(shù)根;(2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.高中數(shù)學必修1知識點總結全文共10頁,當前為第8頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第8頁。(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.(2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.拓展閱讀:高一生物必修一知識點總結整理高一生物必修一走近細胞知識點總結第一節(jié)從生物圈到細胞1病毒沒有細胞結構,但必須依賴(活細胞)才能生存。2生命活動離不開細胞,細胞是生物體結構和功能的(基本單位)。3生命系統(tǒng)的結構層次:(細胞)、(組織)、(器官)、(系統(tǒng))、(個體)、(種群)(群落)、(生態(tài)系統(tǒng))、(生物圈)。4血液屬于(組織)層次,皮膚屬于(器官)層次。5植物沒有(系統(tǒng))層次,單細胞生物既可化做(個體)層次,又可化做(細胞)層次。6地球上最基本的生命系統(tǒng)是(細胞)。7種群:在一定的區(qū)域內(nèi)同種生物個體的總和。例:一個池塘中所有的鯉魚。8群落:在一定的區(qū)域內(nèi)所有生物的總和。例:一個池塘中所有的生物。(不是所有的魚)9生態(tài)系統(tǒng):生物群落和它生存的無機環(huán)境相互作用而形成的統(tǒng)一整體。10以細胞代謝為基礎的生物與環(huán)境之間的物質(zhì)和能量的交換;以細胞增殖、分化為基礎的生長與發(fā)育;以細胞內(nèi)基因的傳遞和變化為基礎的遺傳與變異。第二節(jié)細胞的多樣性和統(tǒng)一性一、高倍鏡的使用步驟(尤其要注意第1和第4步)1、在低倍鏡下找到物象,將物象移至(視野中央)高中數(shù)學必修1知識點總結全文共10頁,當前為第9頁。高中數(shù)學必修1知識點總結全文共10頁,當前為第9頁。3、調(diào)節(jié)(光圈)和(反光鏡),使視野亮度適宜。4、調(diào)節(jié)(細準焦螺旋),使物象清晰。二、顯微鏡使用常識1、調(diào)亮視野的兩種方法(放大光圈)、(使用凹面鏡)。2、高倍鏡:物象(大),視野(暗),看到細胞數(shù)目(少)。低倍鏡:物象(小),視野(亮),看到的細胞數(shù)目(多)。3、物鏡:(有)螺紋,鏡筒越(長),放大倍數(shù)越大。目鏡:(無)螺紋,鏡筒越(短),放大倍數(shù)越大。放大倍數(shù)越大、視野范圍越小、視野越暗、視野中細胞數(shù)目越少、每個細胞越大放大倍數(shù)越小、視野范圍越大、視野越亮、視野中細胞數(shù)目越多、每個細胞越小4、放大倍數(shù)=物鏡的放大倍數(shù)х目鏡的放大倍數(shù)5、一行細胞的數(shù)目變化可根據(jù)視野范圍與放大倍數(shù)成反比計算方法:個數(shù)×放大倍數(shù)的比例倒數(shù)=最后看到的細胞數(shù)如:在目鏡10×物鏡10×的視野中有一行細胞,數(shù)目是20個,在目鏡不換物鏡換成40×,那么在視野中能看見多少個細胞?20×1/4=56、圓行視野范圍細胞的數(shù)量的變化可根據(jù)視野范圍與放大倍數(shù)的平方成反比計算如:在目鏡為10×物鏡為10×的視野中看見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論