版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省咸陽市涇陽縣2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.2.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經(jīng)過點,若的面積為,則雙曲線的離心率為()A. B. C. D.3.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.5.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.6.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是()A.48 B.60 C.72 D.1207.已知數(shù)列滿足,則()A. B. C. D.8.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.10.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.11.設(shè)全集,集合,,則集合()A. B. C. D.12.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機(jī)選取1個數(shù),則其和等于11的概率是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前n項和為,,,則=_______.14.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.15.函數(shù)在處的切線方程是____________.16.假設(shè)10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.18.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點,與相交于點,求.19.(12分)在△ABC中,角A,B,C的對邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點,且△ACD的面積為,求sin∠ADB.20.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.21.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當(dāng)平面,求的值;(2)當(dāng)是中點時,求四面體的體積.22.(10分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當(dāng)直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
以BC的中點為坐標(biāo)原點,建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【題目詳解】以BC的中點為坐標(biāo)原點,建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.【題目點撥】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.2、B【解題分析】
根據(jù)題意,設(shè)點在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【題目詳解】由題意,設(shè)點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【題目點撥】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.3、A【解題分析】
根據(jù)冪函數(shù)定義,求得的值,結(jié)合充分條件與必要條件的概念即可判斷.【題目詳解】∵當(dāng)函數(shù)為冪函數(shù)時,,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【題目點撥】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應(yīng)用,屬于基礎(chǔ)題.4、A【解題分析】
若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個結(jié)論可以求出雙曲線離心率的取值范圍.【題目詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【題目點撥】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時要注意挖掘隱含條件.5、A【解題分析】
先利用最高點縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【題目詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【題目點撥】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.6、A【解題分析】
對數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個數(shù)字相鄰,利用分類計數(shù)原理,即可得到結(jié)論【題目詳解】數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個數(shù)字出現(xiàn)在第位時,同理也有個數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個故滿足條件的不同的五位數(shù)的個數(shù)是個故選【題目點撥】本題主要考查了排列,組合及簡單計數(shù)問題,解題的關(guān)鍵是對數(shù)字分類討論,屬于基礎(chǔ)題。7、C【解題分析】
利用的前項和求出數(shù)列的通項公式,可計算出,然后利用裂項法可求出的值.【題目詳解】.當(dāng)時,;當(dāng)時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【題目點撥】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.8、A【解題分析】
本題根據(jù)基本不等式,結(jié)合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【題目詳解】當(dāng)時,,則當(dāng)時,有,解得,充分性成立;當(dāng)時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【題目點撥】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.9、A【解題分析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【題目詳解】由題意可知拋物線方程為,設(shè)點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【題目點撥】本題考查拋物線的方程應(yīng)用,同時也考查了焦半徑公式等.屬于中檔題.10、D【解題分析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線可解得.【題目詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【題目點撥】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.11、C【解題分析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.12、A【解題分析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【題目詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機(jī)選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【題目點撥】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用求出公差,結(jié)合等差數(shù)列的通項公式可求.【題目詳解】設(shè)公差為,因為,所以,即.所以.故答案為:【題目點撥】本題主要考查等差數(shù)列通項公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、【解題分析】
求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【題目詳解】如圖所示,設(shè),由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設(shè)以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【題目點撥】本題主要考查向量的綜合應(yīng)用問題,涉及到圓的相關(guān)知識與余弦定理,考查學(xué)生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.15、【解題分析】
求出和的值,利用點斜式可得出所求切線的方程.【題目詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【題目點撥】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.16、【解題分析】
分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【題目詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【題目點撥】本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解題分析】
(Ⅰ)取中點,連,,根據(jù)平行四邊形,可得,進(jìn)而證得平面平面,利用面面垂直的性質(zhì),得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【題目詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.【題目點撥】本題主要考查了空間中線面位置關(guān)系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,以及合理利用“等體積法”求解是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.18、(1)曲線的普通方程為;直線的直角坐標(biāo)方程為(2)【解題分析】
(1)利用消去參數(shù),將曲線的參數(shù)方程化成普通方程,利用互化公式,將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)(1)求出曲線的極坐標(biāo)方程,分別聯(lián)立射線與曲線以及射線與直線的極坐標(biāo)方程,求出和,即可求出.【題目詳解】解:(1)因為(為參數(shù)),所以消去參數(shù),得,所以曲線的普通方程為.因為所以直線的直角坐標(biāo)方程為.(2)曲線的極坐標(biāo)方程為.設(shè)的極徑分別為和,將()代入,解得,將()代入,解得.故.【題目點撥】本題考查利用消參法將參數(shù)方程化成普通方程以及利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,還考查極徑的運(yùn)用和兩點間距離,屬于中檔題.19、(1);(2).【解題分析】
(1)根據(jù)誘導(dǎo)公式和二倍角公式,將已知等式化為角關(guān)系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根據(jù)面積公式求出長,根據(jù)余弦定理求出,由正弦定理求出,即可求出結(jié)論.【題目詳解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【題目點撥】本題考查三角恒等變換求值、面積公式、余弦定理、正弦定理解三角形,考查計算求解能力,屬于中檔題.20、(1)證明見解析;(2)【解題分析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標(biāo)系,求出平面的法向量,計算與的夾角的余弦值得出答案.【題目詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設(shè)平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【題目點撥】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.21、(1).(2)【解題分析】
(1)利用線面垂直的性質(zhì)得出,進(jìn)而得出,利用相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考政治一輪復(fù)習(xí)第二部分政治生活第一單元公民的政治生活單元整合教案
- 初中創(chuàng)新實踐報告范文
- 2025加工承攬合同的樣板2
- 2025快遞承包合同協(xié)議書
- 2025年煙臺貨運(yùn)從業(yè)資格證模擬考
- 2025年商洛貨運(yùn)考試題目
- 2025上海市房屋租賃合同登記備案證明辦理指南
- 聚能處理機(jī)行業(yè)深度研究報告
- 上海外國語大學(xué)賢達(dá)經(jīng)濟(jì)人文學(xué)院《中日關(guān)系史專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 《植物生長與環(huán)境》課件
- 胸痛中心關(guān)鍵質(zhì)控指標(biāo)及質(zhì)量改進(jìn)計劃
- 2024年西藏自治區(qū)中考地理真題(解析版)
- 2024年中考作文十二大高頻熱點主題4-青春夢想(素材)
- 2024年四川省網(wǎng)格員招聘理論考試復(fù)習(xí)題庫(含答案)
- 江南音樂文化之美智慧樹知到期末考試答案2024年
- 中建測評2024二測題庫及答案
- 低代碼開發(fā)智慧樹知到期末考試答案2024年
- 創(chuàng)業(yè)修煉智慧樹知到期末考試答案2024年
- 離職分析課件
- 學(xué)前教育中的體驗式教學(xué)與實踐
- 新能源船舶發(fā)展現(xiàn)狀與趨勢探討
評論
0/150
提交評論