2023-2024學(xué)年上海市上海交大附屬中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2023-2024學(xué)年上海市上海交大附屬中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2023-2024學(xué)年上海市上海交大附屬中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2023-2024學(xué)年上海市上海交大附屬中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2023-2024學(xué)年上海市上海交大附屬中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年上海市上海交大附屬中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.22.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.3.設(shè),是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④4.已知復(fù)數(shù)滿足,則的值為()A. B. C. D.25.已知函數(shù),,若對任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.6.下列函數(shù)中,圖象關(guān)于軸對稱的為()A. B.,C. D.7.如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測試的總平均分是1038.若sin(α+3π2A.-12 B.-139.已知數(shù)列的前n項(xiàng)和為,,且對于任意,滿足,則()A. B. C. D.10.如圖所示,三國時(shí)代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計(jì),?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.10811.如果,那么下列不等式成立的是()A. B.C. D.12.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.11二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知,,為的中點(diǎn),為以為直徑的圓上一動點(diǎn),則的最小值是_____.14.已知等差數(shù)列的前n項(xiàng)和為Sn,若,則____.15.設(shè)為拋物線的焦點(diǎn),為上互相不重合的三點(diǎn),且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.16.已知復(fù)數(shù)(為虛數(shù)單位),則的模為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值18.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.19.(12分)超級病菌是一種耐藥性細(xì)菌,產(chǎn)生超級細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因?yàn)楦腥径鹂膳碌难装Y,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細(xì)菌,需要檢驗(yàn)血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次,假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p().(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過2次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.(i)試運(yùn)用概率統(tǒng)計(jì)的知識,若,試求p關(guān)于k的函數(shù)關(guān)系式;(ii)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,20.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:時(shí)間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時(shí)間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時(shí)間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過4天辦理社保手續(xù)所需時(shí)間超過4天60總計(jì)21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87921.(12分)某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失?。畷x級成功晉級失敗合計(jì)男16女50合計(jì)(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級成功”與性別有關(guān)?(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02422.(10分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點(diǎn),求的取值范圍,并證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.2、B【解析】

方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.3、C【解析】

根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因?yàn)?,,所以或,因?yàn)?,所以,故②對③:或,故③錯④:如圖因?yàn)?,,在?nèi)過點(diǎn)作直線的垂線,則直線,又因?yàn)?,設(shè)經(jīng)過和相交的平面與交于直線,則又,所以因?yàn)?,,所以,所以,故④?故選:C【點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.4、C【解析】

由復(fù)數(shù)的除法運(yùn)算整理已知求得復(fù)數(shù)z,進(jìn)而求得其模.【詳解】因?yàn)椋怨蔬x:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.5、C【解析】

將函數(shù)解析式化簡,并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.6、D【解析】

圖象關(guān)于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)?,不關(guān)于原點(diǎn)對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對稱.7、D【解析】

計(jì)算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計(jì)算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因?yàn)榧?、乙兩班的人?shù)不知道,所以兩班的總平均分無法計(jì)算,故D錯誤.故選:.【點(diǎn)睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.8、B【解析】

由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】

利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.10、B【解析】

根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,

則小正方形的邊長為,小正方形的面積,

則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,

故選:B.【點(diǎn)睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.11、D【解析】

利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.12、A【解析】

根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建立合適的直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而可得的坐標(biāo)表示,利用平面向量數(shù)量積的坐標(biāo)表示求出的表達(dá)式,求出其最小值即可.【詳解】建立直角坐標(biāo)系如圖所示:則點(diǎn),,,設(shè)點(diǎn),所以,由平面向量數(shù)量積的坐標(biāo)表示可得,,其中,因?yàn)?所以的最小值為.故答案為:【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運(yùn)算求解能力;建立直角坐標(biāo)系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.14、【解析】

由,,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質(zhì)可得:,,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點(diǎn)睛】本題主要考查等差數(shù)列前n項(xiàng)和的性質(zhì),相對不難.15、或【解析】

設(shè)出三點(diǎn)的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因?yàn)?、、成等差?shù)列,所以有,所以,因?yàn)榫€段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.16、【解析】,所以.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進(jìn)行化一,可得到最值,此時(shí),可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,且滿足,,當(dāng)時(shí),取最大值,此時(shí),【點(diǎn)睛】這個題目考查了參數(shù)方程化為普通方程的方法,極坐標(biāo)化為直角坐標(biāo)的方法,以及極坐標(biāo)中極徑的幾何意義,極徑代表的是曲線上的點(diǎn)到極點(diǎn)的距離,在參數(shù)方程和極坐標(biāo)方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點(diǎn)的曲線,而t的應(yīng)用更廣泛一些.18、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)取中點(diǎn),連,,根據(jù)平行四邊形,可得,進(jìn)而證得平面平面,利用面面垂直的性質(zhì),得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點(diǎn),連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點(diǎn),則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.【點(diǎn)睛】本題主要考查了空間中線面位置關(guān)系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,以及合理利用“等體積法”求解是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.19、(1)(2)(i)(,且).(ii)最大值為4.【解析】

(1)設(shè)恰好經(jīng)過2次檢驗(yàn)?zāi)馨殃栃詷颖救繖z驗(yàn)出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進(jìn)而由可得到p關(guān)于k的函數(shù)關(guān)系式;(ii)由可得,推導(dǎo)出,設(shè)(),利用導(dǎo)函數(shù)判斷的單調(diào)性,由單調(diào)性可求出的最大值【詳解】(1)設(shè)恰好經(jīng)過2次檢驗(yàn)?zāi)馨殃栃詷颖救繖z驗(yàn)出來為事件A,則,∴恰好經(jīng)過兩次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關(guān)于k的函數(shù)關(guān)系式為(,且)(ii)由題意知,得,,,,設(shè)(),則,令,則,∴當(dāng)時(shí),,即在上單調(diào)增減,又,,,又,,,∴k的最大值為4【點(diǎn)睛】本題考查古典概型的概率公式的應(yīng)用,考查隨機(jī)變量及其分布,考查利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性20、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】

(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計(jì)算出的觀測值,即可進(jìn)行判斷;(2)先計(jì)算出時(shí)間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計(jì)算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因?yàn)闃颖緮?shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時(shí)間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時(shí)間與是否流動人員列聯(lián)表流動人員非流動人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過4天453075辦理社保手續(xù)所需時(shí)間超過4天16560225總計(jì)21090300結(jié)合列聯(lián)表可算得.有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動人員”有關(guān).(2)根據(jù)分層抽樣可知時(shí)間在可選9人,時(shí)間在可以選3名,故,則,,,,可知分布列為0123可知.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)中的計(jì)算,以及離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.21、(1);(2)列聯(lián)表見解析,有超過的把握認(rèn)為“晉級成功”與性別有關(guān);(3)分布列見解析,=3【解析】

(1)由頻率和為1,列出方程求的值;(2)由頻率分布

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論