2024年河北省滄州市肅寧一中高三上數(shù)學期末調研試題含解析_第1頁
2024年河北省滄州市肅寧一中高三上數(shù)學期末調研試題含解析_第2頁
2024年河北省滄州市肅寧一中高三上數(shù)學期末調研試題含解析_第3頁
2024年河北省滄州市肅寧一中高三上數(shù)學期末調研試題含解析_第4頁
2024年河北省滄州市肅寧一中高三上數(shù)學期末調研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024年河北省滄州市肅寧一中高三上數(shù)學期末調研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.42.在正方體中,E是棱的中點,F(xiàn)是側面內的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值3.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形4.已知復數(shù)滿足,則()A. B. C. D.5.已知集合A={x|x<1},B={x|},則A. B.C. D.6.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.7.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁8.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.9.做拋擲一枚骰子的試驗,當出現(xiàn)1點或2點時,就說這次試驗成功,假設骰子是質地均勻的.則在3次這樣的試驗中成功次數(shù)X的期望為()A.13 B.110.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.111.已知,函數(shù)在區(qū)間內沒有最值,給出下列四個結論:①在上單調遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④12.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]二、填空題:本題共4小題,每小題5分,共20分。13.設數(shù)列的前項和為,且對任意正整數(shù),都有,則___14.設為定義在上的偶函數(shù),當時,(為常數(shù)),若,則實數(shù)的值為______.15.若實數(shù),滿足不等式組,則的最小值為______.16.在的展開式中,的系數(shù)為______用數(shù)字作答三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,解關于x的不等式;(2)當時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.18.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.19.(12分)在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若點是直線的一點,過點作曲線的切線,切點為,求的最小值.20.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)21.(12分)設函數(shù),(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.22.(10分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

首先把三視圖轉換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.【點睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎題.2、C【解析】

分別根據(jù)線面平行的性質定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.3、B【解析】

化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數(shù)的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.4、A【解析】

由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.5、A【解析】∵集合∴∵集合∴,故選A6、A【解析】

設坐標,根據(jù)向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數(shù)量積運算;關鍵是利用動點坐標表示出變量,根據(jù)平面向量數(shù)量積的坐標運算可整理得軌跡方程.7、C【解析】

分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.8、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.9、C【解析】

每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點睛】本題考查了二項分布求數(shù)學期望,意在考查學生的計算能力和應用能力.10、A【解析】

由題意得到關于的等式,結合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數(shù)學應用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.11、A【解析】

先根據(jù)函數(shù)在區(qū)間內沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內沒有最值.所以,或解得或.又,所以.令.可得.且在上單調遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質,考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.12、B【解析】

先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用行列式定義,得到與的關系,賦值,即可求出結果?!驹斀狻坑?,令,得,解得。【點睛】本題主要考查行列式定義的應用。14、1【解析】

根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當時,,所以,所以實數(shù)的值為1.故答案為:1【點睛】本題主要考查函數(shù)奇偶性的應用,還考查了運算求解的能力,屬于基礎題.15、5【解析】

根據(jù)題意,畫出圖像,數(shù)形結合,將目標轉化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當,時,取得最小值,且.【點睛】本題考查線性規(guī)劃問題,屬于基礎題16、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)當時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進而求得的取值范圍.【詳解】(1)當時,由得由得解:,得∴當時,關于的不等式的解集為(2)①當時,,所以在上是減函數(shù),在是增函數(shù),所以,由題設得,解得.②當時,同理求得.綜上所述,的取值范圍為.【點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分段法解含有兩個絕對值的不等式,屬于中檔題.18、(1)證明見詳解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因為所以(2)當時所以當且僅當即時等號成立因為存在,且,使得成立所以所以或解得:或或【點睛】1.要熟練掌握絕對值的三角不等式,即2.應用基本不等式求最值時要滿足“一正二定三相等”.19、(1),;(2)見解析【解析】

(1)消去t,得直線的普通方程,利用極坐標與普通方程互化公式得曲線的直角坐標方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因為,,所以曲線的直角坐標方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.【點睛】本題考查參數(shù)方程化普通方程,極坐標與普通方程互化,直線與圓的位置關系,是中檔題20、(1)填表見解析;有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”(2)①詳見解析②期望;方差【解析】

(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據(jù)分析知,計算出期望與方差.【詳解】(1)分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”.(2)①由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數(shù)為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數(shù)學期望與方差的計算問題,屬于基礎題.21、(1)或;(2)證明見解析【解析】

(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當時,,所以或或解得或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論