人教版高中數(shù)學(xué)選修第一講《不等式和絕對值不等式》課件5課時課件_第1頁
人教版高中數(shù)學(xué)選修第一講《不等式和絕對值不等式》課件5課時課件_第2頁
人教版高中數(shù)學(xué)選修第一講《不等式和絕對值不等式》課件5課時課件_第3頁
人教版高中數(shù)學(xué)選修第一講《不等式和絕對值不等式》課件5課時課件_第4頁
人教版高中數(shù)學(xué)選修第一講《不等式和絕對值不等式》課件5課時課件_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第一講不等式和絕對值不等式1、不等式復(fù)習(xí)引入:比較法的基本步驟:1.作差(或作商)2.變形3.定號(與0比較或與1比較).

二:不等式的性質(zhì)(傳遞性)(可加性)(可乘性)(乘方性)(開方性)(加法法則)(乘法法則)(對稱性)新課講解:基本不等式定理1(重要不等式)

如果a,b∈R,那么

a2+b2≥2ab.當(dāng)且僅當(dāng)a=b時等號成立。證明:探究:

你能從幾何的角度解釋定理1嗎?

分析:a2與b2的幾何意義是正方形面積,ab的幾何意義是矩形面積,可考慮從圖形的面積角度解釋定理。課本P5頁aabbbAHIDKGBJCFE

如圖把實數(shù)a,b作為線段長度,以a≥b為例,在正方形ABCD中,AB=a;在正方形CEFG中,EF=b.則S正方形ABCD+S正方形CEFG=a2+b2.

S矩形BCGH+S矩形JCDI=2ab,其值等于圖中有陰影部分的面積,它不大于正方形ABCD與正方形CEFG的面積和。即a2+b2≥2ab.當(dāng)且僅當(dāng)a=b時,兩個矩形成為正方形,此時有a2+b2=2ab。

定理2(基本不等式)如果a,b>0,那么當(dāng)且僅當(dāng)a=b時,等號成立。證明:稱為a,b的算術(shù)平均稱為a,b的幾何平均

兩個正數(shù)的算術(shù)平均不小于它們的幾何平均。如圖在直角三角形中,CO、CD分別是斜邊上的中線和高,設(shè)AD=a,DB=b,則由圖形可得到基本不等式的幾何解釋。CABDO關(guān)于基本不等式的幾何意義:課本P6頁例1求證:(1)在所有周長相同的矩形中,正方形的面積最大;(2)在所有面積相同的矩形中,正方形的周長最短。結(jié)論:已知x,y都是正數(shù):(1)如果積xy是定值p,那么當(dāng)x=y時,和x+y有最小值2;(2)如果和x+y是定值s,那么當(dāng)x=y時,積xy有最大值A(chǔ)BENMFDCQPHG例2某居民小區(qū)要建一座八邊形的休閑場所,它的主體造型平面圖(右圖)是由兩個相同的矩形ABCD和EFGH構(gòu)成的面積為200平方米的十字型地域,計劃在正方形MNPQ上建一座花壇,造價為每平方米4200元,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為每平方米210元,再在四個空角(圖中四個直角三角形)上鋪上草坪,造價為每平方米80元。(1)設(shè)總造價為S元,AD長為x米,試建立S關(guān)于x的函數(shù)關(guān)系式。(2)當(dāng)x為何值時S最小,并求出這個最小值。三個正數(shù)的算術(shù)-幾何平均不等式思考:以上定理如何證明呢?課本例5解:∵

∴=

當(dāng)且僅當(dāng)即

時有最小值1例3若X>-1,則x為何值時,有最小值,并求出最小值?解:小結(jié):理解并熟練掌握基本不等式及其應(yīng)用,特別要注意利用基本不等式求最值時,一定要滿足“一正二定三相等”的條件。三個正數(shù)的算術(shù)——幾何平均不等式的應(yīng)用例6構(gòu)造三個數(shù)相加等于定值.練習(xí):θ是銳角,求y=sinθcos2θ的最大值。課堂練習(xí):課本P10第5題、第6題、第11題5、設(shè)a,b∈R+,且a≠b,求證:

(1)(2)6、設(shè)a,b,c是不全相等的正數(shù),求證:(1)(a+b)(b+c)(c+a)>8abc;(2)a+b+c>第11題

作業(yè)二、絕對值不等式1、絕對值三角不等式

實數(shù)a的絕對值|a|的幾何意義是表示數(shù)軸上坐標(biāo)為a的點A到原點的距離:OaAx|a|xABab|a-b|任意兩個實數(shù)a,b在數(shù)軸上的對應(yīng)點分別為A、B,那么|a-b|的幾何意義是A、B兩點間的距離。

聯(lián)系絕對值的幾何意義,從“運算”的角度研究|a|,|b|,|a+b|,|a-b|等之間的關(guān)系:分ab>0和ab<0兩種情形討論:(1)當(dāng)ab>0時,如下圖可得|a+b|=|a|+|b|Oxaba+bOxaba+b(2)當(dāng)ab<0時,也分為兩種情況:如果a>0,b<0,如下圖可得:|a+b|<|a|+|b|Obaxa+b如果a<0,b>0,如下圖可得:|a+b|<|a|+|b|a+babxO(3)如果ab=0,則a=0或b=0,易得:

|a+b|=|a|+|b|

定理1如果a,b是實數(shù),則

|a+b|≤|a|+|b|當(dāng)且僅當(dāng)ab≥0時,等號成立。探究如果把定理1中的實數(shù)a,b分別換成向量a,b,能得出什么結(jié)果?你能解釋它的幾何意義嗎?Oxy探究當(dāng)向量a,b共線時,有怎樣的結(jié)論?這個不等式稱為絕對值三角不等式。定理1的代數(shù)證明:探究你能根據(jù)定理1的研究思路,探究一下|a|,|b|,|a+b|,|a-b|等之間的其他關(guān)系嗎?例如:|a|-|b|與|a+b|,|a|+|b|與|a-b|,|a|-|b|與|a-b|等之間的關(guān)系。

|a|-|b|≤|a+b|,|a|+|b|≥|a-b|,|a|-|b|≤|a-b|.

如果a,b是實數(shù),那么

|a|-|b|≤|a±b|≤|a|+|b|例1已知ε>0,|x-a|<ε,|y-b|<ε,求證:

|2x+3y-2a-3b|<5ε.證明:|2x+3y-2a-3b|=|(2x-2a)+(3y-3b)|=|2(x-a)+3(y-b)|≤|2(x-a)|+|3(y-b)|=2|x-a|+3|y-b|<2ε

+3ε=5ε.所以|2x+3y-2a-3b|<5ε.定理2如果a,b,c是實數(shù),那么

|a-c|≤|a-b|+|b-c|當(dāng)且僅當(dāng)(a-b)(b-c)≥0時,等號成立。證明:根據(jù)絕對值三角不等式有

|a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c|當(dāng)且僅當(dāng)(a-b)(b-c)≥0時,等號成立。B例2兩個施工隊分別被安排在公路沿線的兩個地點施工,這兩個地點分別位于公路路碑的第10km和第20km處?,F(xiàn)要在公路沿線建兩個施工隊的共同臨時生活區(qū),每個施工隊每天在生活區(qū)和施工地點之間往返一次。要使兩個施工隊每天往返的路程之和最小,生活區(qū)應(yīng)該建于何處?

分析:假設(shè)生活區(qū)建在公路路碑的第xkm處,兩個施工隊每天往返的路程之和為S(x)km,則有

S(x)=2(|x-10|+|x-20|),要求問題化歸為求該函數(shù)的最小值,可用絕對值三角不等式求解。練習(xí):課本P20第1、2題.求證:(1)|a+b|+|a-b|≥2|a|(2)|a+b|-|a-b|≤2|b|2.用幾種方法證明DDC小結(jié):理解和掌握絕對值不等式的兩個定理:

|a+b|≤|a|+|b|(a,b∈R,ab≥0時等號成立)

|a-c|≤|a-b|+|b-c|(a,b,c∈R,(a-b)(b-c)≥0時等號成立)能應(yīng)用定理解決一些證明和求最值問題。作業(yè):課本P20第3、4、5題2、絕對值不等式的解法復(fù)習(xí):如果a>0,則

|x|<a的解集是(-a,a);

|x|>a的解集是(-∞,-a)∪(a,+∞)Oa-axO-aax|x|<a|x|>a(1)|ax+b|≤c和|ax+b|≥c(c>0)型不等式的解法:①換元法:令t=ax+b,轉(zhuǎn)化為|t|≤c和|t|≥c型不等式,然后再求x,得原不等式的解集。②分段討論法:例3

解不等式|3x-1|≤2例4解不等式|2-3x|≥7補充例題:解不等式|ax+b|<c和|ax+b|>c(c>0)型不等式比較:類型化去絕對值后集合上解的意義區(qū)別|ax+b|<c-c<ax+b<c{x|ax+b>-c}∩{x|ax+b<c},交|ax+b|>cax+b<-c或ax+b>c{x|ax+b<-c}∪{x|ax+b>c},并

課堂練習(xí):P20第6題x12-2-3ABA1B1yxO-32-2①利用絕對值不等式的幾何意義②零點分區(qū)間法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論