一輪復(fù)習(xí)人教A版6.2平面向量的數(shù)量積及其應(yīng)用(十年高考)作業(yè)_第1頁
一輪復(fù)習(xí)人教A版6.2平面向量的數(shù)量積及其應(yīng)用(十年高考)作業(yè)_第2頁
一輪復(fù)習(xí)人教A版6.2平面向量的數(shù)量積及其應(yīng)用(十年高考)作業(yè)_第3頁
一輪復(fù)習(xí)人教A版6.2平面向量的數(shù)量積及其應(yīng)用(十年高考)作業(yè)_第4頁
一輪復(fù)習(xí)人教A版6.2平面向量的數(shù)量積及其應(yīng)用(十年高考)作業(yè)_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

平面向量的數(shù)量積及其應(yīng)用考點(diǎn)平面向量的數(shù)量積1.(2022全國(guó)乙理,3,5分)已知向量a,b滿足|a|=1,|b|=3,|a-2b|=3,則a·b=()答案C由|a-2b|=3,可得|a-2b|2=a2-4a·b+4b2=9,又|a|=1,|b|=3,所以a·b=1,故選C.2.(2022新高考Ⅱ,4,5分)已知向量a=(3,4),b=(1,0),c=a+tb,若<a,c>=<b,c>,則t=()答案C由題意可得c=(3+t,4),由<a,c>=<b,c>得cos<a,c>=cos<b,c>,即3(3+t)+4×45(3+t)2+3.(2022北京,10,4分)在△ABC中,AC=3,BC=4,∠C=90°.P為△ABC所在平面內(nèi)的動(dòng)點(diǎn),且PC=1,則PA·PB的取值范圍是(A.[-5,3]B.[-3,5]C.[-6,4]D.[-4,6]答案D解法一:取AB的中點(diǎn)D,PA·PB=(PC+CA)·(PC+CB)=PC2+(CA+CB)·PC+CA·CB=PC2+2CD·PC=1+5×1×cosθ=1+5cosθ(θ為解法二:建立如圖所示的平面直角坐標(biāo)系,則A(0,3),B(-4,0),設(shè)P(cosθ,sinθ),θ∈[0,2π),則PA·PB=(-cosθ,3-sinθ)·(-4-cosθ,-sin=cos2θ+4cosθ+sin2θ-3sinθ=1+4cosθ-3sinθ=1+5cos(θ+φ),其中tanφ=34因?yàn)棣取蔥0,2π),所以PA·PB∈[-4,6].故選4.(2020新高考Ⅰ,7,5分)已知P是邊長(zhǎng)為2的正六邊形ABCDEF內(nèi)的一點(diǎn),則AP·AB的取值范圍是(A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)答案A解法一:如圖,過點(diǎn)P作PP1⊥直線AB于P1,過點(diǎn)C作CC1⊥直線AB于C1,過點(diǎn)F作FF1⊥直線AB于F1,AP·AB=|AP|·|AB|·cos∠PAB,當(dāng)∠PAB為銳角時(shí),|AP|·cos∠PAB=|AP1|,當(dāng)∠PAB為鈍角時(shí),|AP|·cos∠PAB=-|AP1|,所以當(dāng)點(diǎn)P與C重合時(shí),AP·AB最大,此時(shí)AP·AB=|AC1||解法二:連接AE,以A為坐標(biāo)原點(diǎn),AB所在直線為x軸,AE所在直線為y軸,建立平面直角坐標(biāo)系(圖略),則A(0,0),B(2,0),設(shè)P(x0,y0),則-1<x0<3.AB=(2,0),AP=(x0,y0),則AB·AP=2x0∈(-2,6),故選解后反思解決以平面多邊形為載體,有關(guān)平面向量數(shù)量積的復(fù)雜計(jì)算問題時(shí),可以建立恰當(dāng)?shù)淖鴺?biāo)系,將復(fù)雜的運(yùn)算轉(zhuǎn)化為簡(jiǎn)單的坐標(biāo)運(yùn)算,會(huì)大大降低難度.5.(多選)(2021新高考Ⅰ,10,5分)已知O為坐標(biāo)原點(diǎn),點(diǎn)P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α+β),sin(α+β)),A(1,0),則()A.|OPC.OA答案ACA項(xiàng),∵|OP1|=cos2α+sin2α=1,|B項(xiàng),易知|AP|AP2|=(cosβ-1)2+(-sinβ)2=2-2cosβ,C選項(xiàng),∵OA·OP3=(1,0)·(cos(α+β),sin(α+β))=cos(OP1·OP2=(cosα,sinα)·(cosβ,-sinβ)=cosαcosβ-sinαsinβ∴OA·OP3D選項(xiàng),∵OA·OP1=(1,0)·(cosα,sinαOP2·OP3=(cosβ,-sinβ)·(cos(α+β),=cosβ·cos(α+β)-sinβ·sin(α+β)=cos(β+α+β)=cos(α+2β),∴OA·OD選項(xiàng)不正確.故選AC.6.(2019課標(biāo)Ⅱ文,3,5分)已知向量a=(2,3),b=(3,2),則|a-b|=()A.22答案A本題主要考查平面向量的坐標(biāo)運(yùn)算以及向量模的計(jì)算;考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).∵a=(2,3),b=(3,2),∴a-b=(-1,1),∴|a-b|=(-1)2+一題多解∵a=(2,3),b=(3,2),∴|a|2=13,|b|2=13,a·b=12,則|a-b|=a2-2a·b+7.(2017課標(biāo)Ⅱ理,12,5分)已知△ABC是邊長(zhǎng)為2的等邊三角形,P為平面ABC內(nèi)一點(diǎn),則PA·(PB+PC)的最小值是()324答案B設(shè)BC的中點(diǎn)為D,AD的中點(diǎn)為E,則有PB+PC=2PD,則PA·(PB+PC)=2PA·PD=2(PE+EA)·(PE-EA)=2(PE2-EA而AE2=322當(dāng)P與E重合時(shí),PE2有最小值0,故此時(shí)PA·(PB+PC)取最小值最小值為-2EA2=-2×34=-方法總結(jié)在求向量數(shù)量積的最值時(shí),常用取中點(diǎn)的方法,如本題中利用PA·PD=PE2-EA2一題多解以AB所在直線為x軸,AB的中點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系,如圖,則A(-1,0),B(1,0),C(0,3),設(shè)P(x,y),取BC的中點(diǎn)D,則D12,32.PA·(PB+PC)=2PA·PD=2(-1-x,-y)·12因此,當(dāng)x=-14,y=34時(shí),PA·(PB+PC)取得最小值,為2×-34=-8.(2016課標(biāo)Ⅱ理,3,5分)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,則m=()答案D由題可得a+b=(4,m-2),又(a+b)⊥b,∴4×3-2×(m-2)=0,∴m=8.故選D.9.(2016四川文,9,5分)已知正三角形ABC的邊長(zhǎng)為23,平面ABC內(nèi)的動(dòng)點(diǎn)P,M滿足|AP|=1,PM=MC,則|BM|2的最大值是()A.434B.C.37+634答案B以A為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,則A(0,0),C(23,0),B(3,3).設(shè)P(x,y),∵|AP|=1,∴x2+y2=1,∵PM=MC,∴M為PC的中點(diǎn),∴Mx+2∴|BM|2=x+232-32+y2-3又∵-1≤y≤1,∴當(dāng)y=-1時(shí),|BM|2取得最大值,且最大值為494思路分析由△ABC為正三角形,|AP|=1,考慮到用建立平面直角坐標(biāo)系的方法來解決向量問題.評(píng)析本題考查了向量的坐標(biāo)運(yùn)算,運(yùn)用了轉(zhuǎn)化與化歸思想.10.(2015福建文,7,5分)設(shè)a=(1,2),b=(1,1),c=a+kb.若b⊥c,則實(shí)數(shù)k的值等于()3253C.53答案Ac=a+kb=(1+k,2+k).由b⊥c,得b·c=0,即1+k+2+k=0,解得k=-32.故選11.(2015重慶理,6,5分)若非零向量a,b滿足|a|=223|b|,且(a-b)⊥(3a+2b),則a與b的夾角為(A.π4B.π2C.3π答案A∵(a-b)⊥(3a+2b),∴(a-b)·(3a+2b)=0?3|a|2-a·b-2|b|2=0?3|a|2-|a|·|b|·cos<a,b>-2|b|2=0.又∵|a|=223|b|,∴83|b|2-223|b|2·cos<a,b>-2|b|2=0.∴cos<a,b>=22.∵<a,∴<a,b>=π4.選12.(2015重慶文,7,5分)已知非零向量a,b滿足|b|=4|a|,且a⊥(2a+b),則a與b的夾角為()A.π3B.π2C.2π答案C因?yàn)閍⊥(2a+b),所以a·(2a+b)=0,得到a·b=-2|a|2,設(shè)a與b的夾角為θ,則cosθ=a·b|a||b|=-2|a|24|a|2=-113.(2014大綱全國(guó)理,4,5分)若向量a、b滿足:|a|=1,(a+b)⊥a,(2a+b)⊥b,則|b|=()B.2D.2答案B由題意得(a+b)·a=a2+a·b=0,(2a+b)·b=2a·b+b2=0?14.(2016課標(biāo)Ⅲ,3,5分)已知向量BA=12,32,BC=32,°°°°答案Acos∠ABC=BA·BC|BA|·|BC|=思路分析由向量的夾角公式可求得cos∠ABC的值,進(jìn)而得∠ABC的大小.15.(2016北京,4,5分)設(shè)a,b是向量.則“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案D當(dāng)|a|=|b|=0時(shí),|a|=|b|?|a+b|=|a-b|.當(dāng)|a|=|b|≠0時(shí),|a+b|=|a-b|?(a+b)2=(a-b)2?a·b=0?a⊥b,推不出|a|=|b|.同樣,由|a|=|b|也不能推出a⊥b.故選D.解后反思由向量加法、減法的幾何意義知:當(dāng)a、b不共線,且|a|=|b|時(shí),a+b與a-b垂直;當(dāng)a⊥b時(shí),|a+b|=|a-b|.16.(2016山東,8,5分)已知非零向量m,n滿足4|m|=3|n|,cos<m,n>=13.若n⊥(tm+n),則實(shí)數(shù)t的值為(C.94答案B因?yàn)閚⊥(tm+n),所以tm·n+n2=0,所以m·n=-n2t,又4|m|=3|所以cos<m,n>=m·n|m|·|n|=417.(2015山東理,4,5分)已知菱形ABCD的邊長(zhǎng)為a,∠ABC=60°,則BD·CD=()32a234a2C.34a2D.答案DBD·CD=(BC+CD)·CD=BC·CD+CD2=12a2+a2=3218.(2015課標(biāo)Ⅱ文,4,5分)向量a=(1,-1),b=(-1,2),則(2a+b)·a=()答案C因?yàn)?a+b=2(1,-1)+(-1,2)=(2,-2)+(-1,2)=(1,0),所以(2a+b)·a=(1,0)·(1,-1)=1×1+0×(-1)=1.故選C.19.(2015四川理,7,5分)設(shè)四邊形ABCD為平行四邊形,|AB|=6,|AD|=4.若點(diǎn)M,N滿足BM=3MC,DN=2NC,則AM·NM=()答案C依題意有AM=AB+BM=AB+34BC,NM=NC+CM=13DC-14BC=13AB-14BC,所以AM·NM=20.(2015廣東文,9,5分)在平面直角坐標(biāo)系xOy中,已知四邊形ABCD是平行四邊形,AB=(1,-2),AD=(2,1),則AD·AC=()答案A∵四邊形ABCD是平行四邊形,∴AC=AB+AD=(3,-1),∴AD·AC=2×3+1×(-1)=5.選A.21.(2014課標(biāo)Ⅱ,理3,文4,5分)設(shè)向量a,b滿足|a+b|=10,|a-b|=6,則a·b=()答案A∵|a+b|=10,∴a2+2a·b+b2=10.①又|a-b|=6,∴a2-2a·b+b2=6.②①-②,得4a·b=4,即a·b=1,故選A.22.(2014大綱全國(guó)文,6,5分)已知a、b為單位向量,其夾角為60°,則(2a-b)·b=()答案B(2a-b)·b=2a·b-|b|2=2×1×1×cos60°-12=0,故選B.23.(2021全國(guó)甲文,13,5分)若向量a,b滿足|a|=3,|a-b|=5,a·b=1,則|b|=.

答案32解析依題意可得|a-b|=(a-b)2=a|24.(2022全國(guó)甲文,13,5分)已知向量a=(m,3),b=(1,m+1).若a⊥b,則m=.

答案-3解析因?yàn)閍⊥b,所以a·b=0,即m×1+3(m+1)=0,解得m=-3425.(2021全國(guó)乙理,14,5分)已知向量a=(1,3),b=(3,4),若(a-λb)⊥b,則λ=.

答案3解題指導(dǎo):根據(jù)(a-λb)⊥b得(a-λb)·b=0,再轉(zhuǎn)化為坐標(biāo)運(yùn)算,得到關(guān)于λ的方程求解即可.解析解法一:由a=(1,3),b=(3,4),得a-λb=(1-3λ,3-4λ),由(a-λb)⊥b得(a-λb)·b=0,故3(1-3λ)+4(3-4λ)=0?15-25λ=0?λ=35解法二:由(a-λb)⊥b得(a-λb)·b=0,即a·b-λb2=0,a·b=1×3+3×4=15,b2=3×3+4×4=25,則15-25λ=0,∴λ=3526.(2021全國(guó)甲理,14,5分)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,則k=.

答案-10解題指導(dǎo):首先確定c的坐標(biāo)表示,然后依據(jù)向量垂直的條件建立等式,進(jìn)而確定k的值.解析由題意知c=a+kb=(3,1)+k(1,0)=(3+k,1),結(jié)合a⊥c得3(3+k)+1×1=0,解得k=-103易錯(cuò)警示在利用a,b的坐標(biāo)表示c時(shí),易出現(xiàn)運(yùn)算錯(cuò)誤.27.(2022全國(guó)甲理,13,5分)設(shè)向量a,b的夾角的余弦值為13,且|a|=1,|b|=3,則(2a+b)·b=答案11解析根據(jù)題意,得(2a+b)·b=2a·b+b2=2×1×3×13+9=11.28.(2018上海,8,5分)在平面直角坐標(biāo)系中,已知點(diǎn)A(-1,0)、B(2,0),E、F是y軸上的兩個(gè)動(dòng)點(diǎn),且|EF|=2,則AE·BF的最小值為.

答案-3解析本題主要考查數(shù)量積的運(yùn)算以及二次函數(shù)的最值問題.設(shè)E(0,m),F(0,n),又A(-1,0),B(2,0),∴AE=(1,m),BF=(-2,n).∴AE·BF=-2+mn,又知|EF|=2,∴|m-n|=2.①當(dāng)m=n+2時(shí),AE·BF=mn-2=(n+2)n-2=n2+2n-2=(n+1)2-3.∴當(dāng)n=-1,即E(0,1),F(0,-1)時(shí),AE·BF取得最小值-3.②當(dāng)m=n-2時(shí),AE·BF=mn-2=(n-2)n-2=n2-2n-2=(n-1)2-3.∴當(dāng)n=1,即E(0,-1),F(0,1)時(shí),AE·BF取得最小值-3.綜上可知,AE·BF的最小值為-3.29.(2014重慶文,12,5分)已知向量a與b的夾角為60°,且a=(-2,-6),|b|=10,則a·b=.

答案10解析由a=(-2,-6),得|a|=(-2)∴a·b=|a||b|cos<a,b>=210×10×cos60°=10.30.(2016課標(biāo)Ⅰ,13,5分)設(shè)向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,則m=.

答案-2解析由|a+b|2=|a|2+|b|2可得a·b=0,∴a·b=m+2=0,∴m=-2.思路分析由|a+b|2=|a|2+|b|2得a·b=0,然后利用數(shù)量積的坐標(biāo)表示得到關(guān)于m的方程,解方程求得m.31.(2018北京文,9,5分)設(shè)向量a=(1,0),b=(-1,m).若a⊥(ma-b),則m=.

答案-1解析本題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算.∵a=(1,0),b=(-1,m),∴a2=1,a·b=-1,由a⊥(ma-b)得a·(ma-b)=0,即ma2-a·b=0,即m-(-1)=0,∴m=-1.32.(2017課標(biāo)Ⅰ理,13,5分)已知向量a,b的夾角為60°,|a|=2,|b|=1,則|a+2b|=.

答案23解析本題考查向量數(shù)量積的計(jì)算.由題意知a·b=|a|·|b|cos60°=2×1×12=1,則|a+2b|2=(a+2b)2=|a|2+4|b|2+4a·b所以|a+2b|=23.33.(2017課標(biāo)Ⅰ文,13,5分)已知向量a=(-1,2),b=(m,1).若向量a+b與a垂直,則m=.

答案7解析本題考查向量數(shù)量積的坐標(biāo)運(yùn)算.∵a=(-1,2),b=(m,1),∴a+b=(m-1,3),又(a+b)⊥a,∴(a+b)·a=-(m-1)+6=0,解得m=7.34.(2016課標(biāo)Ⅰ文,13,5分)設(shè)向量a=(x,x+1),b=(1,2),且a⊥b,則x=.

答案-2解析因?yàn)閍⊥b,所以x+2(x+1)=0,解得x=-23易錯(cuò)警示混淆兩向量平行與垂直的條件是造成失分的主要原因.35.(2016山東文,13,5分)已知向量a=(1,-1),b=(6,-4).若a⊥(ta+b),則實(shí)數(shù)t的值為.

答案-5解析因?yàn)閍⊥(ta+b),所以a·(ta+b)=0,即ta2+a·b=0,又因?yàn)閍=(1,-1),b=(6,-4),所以|a|=2,a·b=1×6+(-1)×(-4)=10,因此可得2t+10=0,解得t=-5.評(píng)析本題主要考查向量的數(shù)量積運(yùn)算,向量的模以及兩向量垂直的充要條件等基礎(chǔ)知識(shí),考查學(xué)生的運(yùn)算求解能力以及方程思想的應(yīng)用.36.(2016北京文,9,5分)已知向量a=(1,3),b=(3,1),則a與b夾角的大小為.

答案π解析∵cos<a,b>=a·b|a|∴a與b夾角的大小為π637.(2015浙江,13,4分)已知e1,e2是平面單位向量,且e1·e2=12.若平面向量b滿足b·e1=b·e2=1,則|b|=答案2解析令e1與e2的夾角為θ,∴e1·e2=|e1|·|e2|cosθ=cosθ=12,又0°≤θ≤180°,∴θ=60°.因?yàn)閎·(e1-e2)=0,所以b與e1、e2的夾角均為30°,從而|b|=1cos30°38.(2014課標(biāo)Ⅰ理,15,5分)已知A,B,C為圓O上的三點(diǎn),若AO=12(AB+AC),則AB與AC的夾角為答案90°解析由AO=12(AB+AC)可知O為BC的中點(diǎn),即BC為圓O的直徑,又因?yàn)橹睆剿鶎?duì)的圓周角為直角,所以∠BAC=90°,所以AB與AC的夾角為90°39.(2014湖北文,12,5分)若向量OA=(1,-3),|OA|=|OB|,OA·OB=0,則|AB|=.

答案25解析|AB|=|OB-OA|=OA2∵|OA|=|OB|=12+(-3)2=∴|AB|=20=25,故答案為25.40.(2014湖北理,11,5分)設(shè)向量a=(3,3),b=(1,-1).若(a+λb)⊥(a-λb),則實(shí)數(shù)λ=.

答案±3解析|a|=32,|b|=2,a·b=3×1+3×(-1)=0.因?yàn)?a+λb)⊥(a-λb),所以(a+λb)·(a-λb)=|a|2-λ2|b|2=18-2λ2=0.故λ=±3.41.(2013課標(biāo)Ⅰ,理13,文13,5分)已知兩個(gè)單位向量a,b的夾角為60°,c=ta+(1-t)b.若b·c=0,則t=.

答案2解析解法一:∵b·c=0,∴b·[ta+(1-t)b]=0,ta·b+(1-t)·b2=0,又∵|a|=|b|=1,<a,b>=60°,∴12解法二:由t+(1-t)=1知向量a、b、c的終點(diǎn)A、B、C共線,在平面直角坐標(biāo)系中設(shè)a=(1,0),b=12則c=32把a(bǔ)、b、c的坐標(biāo)代入c=ta+(1-t)b,得t=2.評(píng)析本題考查了向量的運(yùn)算,利用三點(diǎn)共線的條件得到c的坐標(biāo)是解題關(guān)鍵.42.(2012課標(biāo),理13,文13,5分)已知向量a,b夾角為45°,且|a|=1,|2a-b|=10,則|b|=.

答案32解析|2a-b|=10兩邊平方得4|a|2-4|a|·|b|cos45°+|b|2=10.∵|a|=1,∴|b|2-22|b|-6=0.∴|b|=32或|b|=-2(舍去).評(píng)析本題考查了向量的基本運(yùn)算,考查了方程的思想.通過“平方”把向量轉(zhuǎn)化為向量的數(shù)量積是求解的關(guān)鍵.43.(2012安徽文,11,5分)設(shè)向量a=(1,2m),b=(m+1,1),c=(2,m),若(a+c)⊥b,則|a|=.

答案2解析a+c=(3,3m),∵(a+c)⊥b,∴(a+c)·b=0,∴3m+3+3m=0,∴m=-12∴a=(1,-1),∴|a|=12+(-評(píng)析本題主要考查向量的基本運(yùn)算,考查了向量垂直的充要條件.44.(2011課標(biāo),文13,5分)已知a與b為兩個(gè)不共線的單位向量,k為實(shí)數(shù),若向量a+b與向量ka-b垂直,則k=.

答案1解析由題意知|a|=1,|b|=1,<a,b>≠0且<a,b>≠π.由a+b與向量ka-b垂直,得(a+b)·(ka-b)=0,即k|a|2+(k-1)|a||b|·cos<a,b>-|b|2=0,(k-1)(1+cos<a,b>)=0.又1+cos<a,b>≠0,∴k-1=0,k=1.評(píng)析本題考查向量的模、向量的數(shù)量積等相關(guān)知識(shí),考查學(xué)生的運(yùn)算求解能力,屬中等難度試題.45.(2015福建理,9,5分)已知AB⊥AC,|AB|=1t,|AC|=t.若點(diǎn)P是△ABC所在平面內(nèi)的一點(diǎn),且AP=AB|AB|+4AC|AC|,答案A以A為原點(diǎn),AB所在直線為x軸,AC所在直線為y軸建立平面直角坐標(biāo)系,則B1t,0(t>0),C(0,t),P(1,4),PB·PC=1t-1,-4·(-1,t-4)=17-4t+1t≤17-2×46.(2019浙江,17,6分)已知正方形ABCD的邊長(zhǎng)為1.當(dāng)每個(gè)λi(i=1,2,3,4,5,6)取遍±1時(shí),|λ1AB+λ2BC+λ3CD+λ4DA+λ5AC+λ6BD|的最小值是,最大值是.

答案0;25解析本題考查平面向量的坐標(biāo)表示及坐標(biāo)運(yùn)算,在向量的坐標(biāo)運(yùn)算中涉及多個(gè)未知數(shù)據(jù)以此來考查學(xué)生的數(shù)據(jù)處理能力,數(shù)學(xué)運(yùn)算及數(shù)據(jù)分析的核心素養(yǎng).如圖,建立平面直角坐標(biāo)系,則A(0,0),B(1,0),C(1,1),D(0,1),∴AB=(1,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論