2023屆遼寧省朝陽市建平縣建平二中數(shù)學高一下期末經(jīng)典試題含解析_第1頁
2023屆遼寧省朝陽市建平縣建平二中數(shù)學高一下期末經(jīng)典試題含解析_第2頁
2023屆遼寧省朝陽市建平縣建平二中數(shù)學高一下期末經(jīng)典試題含解析_第3頁
2023屆遼寧省朝陽市建平縣建平二中數(shù)學高一下期末經(jīng)典試題含解析_第4頁
2023屆遼寧省朝陽市建平縣建平二中數(shù)學高一下期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等差數(shù)列前項和為,滿足,則下列結(jié)論中正確的是()A.是中的最大值 B.是中的最小值C. D.2.產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工業(yè)產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.據(jù)上述信息,下列結(jié)論中正確的是()A.2015年第三季度環(huán)比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度環(huán)比有所提高3.如圖所示是的圖象的一段,它的一個解析式為()A. B.C. D.4.已知點在第二象限,角頂點為坐標原點,始邊為軸的非負半軸,則角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在中,角,,所對的邊分別為,,,若,,,則()A. B. C. D.6.一個幾何體的三視圖如圖所示,則這個幾何的體積為()立方單位.A. B.C. D.7.下列函數(shù)中,最小正周期為且圖象關(guān)于原點對稱的函數(shù)是()A. B.C. D.8.若一元二次不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.9.已知,,且,則向量在向量上的投影等于()A.-4 B.4 C. D.10.集合,,則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于函數(shù)有下列命題:①由可得必是的整數(shù)倍;②的圖像關(guān)于點對稱,其中正確的序號是____________.12.102,238的最大公約數(shù)是________.13.已知兩條直線,將圓及其內(nèi)部劃分成三個部分,則的取值范圍是_______;若劃分成的三個部分中有兩部分的面積相等,則的取值有_______種可能.14.已知等比數(shù)列an中,a3=2,a15.方程的解集是______.16.已知函數(shù),它的值域是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)已知圖象的相鄰兩條對稱軸的距離為,求正數(shù)的值;(2)已知函數(shù)在區(qū)間上是增函數(shù),求正數(shù)的最大值.18.已知函數(shù)是指數(shù)函數(shù).(1)求的表達式;(2)判斷的奇偶性,并加以證明(3)解不等式:.19.已知一個幾何體是由一個直角三角形繞其斜邊旋轉(zhuǎn)一周所形成的.若該三角形的周長為12米,三邊長由小到大依次為a,b,c,且b恰好為a,c的算術(shù)平均數(shù).(1)求a,b,c;(2)若在該幾何體的表面涂上一層油漆,且每平方米油漆的造價為5元,求所涂的油漆的價格.20.已知公差不為0的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.如圖是我國2011年至2017年生活垃圾無害化處理量(單位:億噸)的折線圖(年份代碼1-7分別對應(yīng)年份)(1)建立關(guān)于的回歸方程(系數(shù)精確到0.001);(2)預(yù)測2020年我國生活垃圾無害化處理量.附注:參考數(shù)據(jù):,,回歸方程中斜率和截距的最小二乘估計公式分別為:,.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】本題考查等差數(shù)列的前n項和公式,等差數(shù)列的性質(zhì),二次函數(shù)的性質(zhì).設(shè)公差為則由等差數(shù)列前n項和公式知:是的二次函數(shù);又知對應(yīng)二次函數(shù)圖像的對稱軸為于是對應(yīng)二次函數(shù)為無法確定所以根據(jù)條件無法確定有沒有最值;但是根據(jù)二次函數(shù)圖像的對稱性,必有即故選D2、C【解析】

根據(jù)同比和環(huán)比的定義比較兩期數(shù)據(jù)得出結(jié)論.【詳解】解:2015年第二季度利用率為74.3%,第三季度利用率為74.0%,故2015年第三季度環(huán)比有所下降,故A錯誤;2015年第一季度利用率為74.2%,2016年第一季度利用率為72.9%,故2016年第一季度同比有所下降,故B錯誤;2016年底三季度利用率率為73.2%,2017年第三季度利用率為76.8%,故2017年第三季度同比有所提高,故C正確;2017年第四季度利用率為78%,2018年第一季度利用率為76.5%,故2018年第一季度環(huán)比有所下降,故D錯誤.故選C.【點睛】本題考查了新定義的理解,圖表認知,考查分析問題解決問題的能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)函數(shù)的圖象,得出振幅與周期,從而求出與的值.【詳解】根據(jù)函數(shù)的圖象知,振幅,周期,即,解得;所以時,,;解得,,所以函數(shù)的一個解析式為.故答案為D.【點睛】本題考查了函數(shù)的圖象與性質(zhì)的應(yīng)用問題,考查三角函數(shù)的解析式的求法,屬于基礎(chǔ)題.4、C【解析】

根據(jù)點的位置,得到不等式組,進行判斷角的終邊落在的位置.【詳解】點在第二象限在第三象限,故本題選C.【點睛】本題考查了通過角的正弦值和正切值的正負性,判斷角的終邊位置,利用三角函數(shù)的定義是解題的關(guān)鍵.5、C【解析】

在中,利用正弦定理求出即可.【詳解】在中,角,,所對的邊分別為,,,已知:,,,利用正弦定理:,解得:.故選C.【點睛】本題考查了正弦定理的應(yīng)用及相關(guān)的運算問題,屬于基礎(chǔ)題.6、D【解析】由三視圖可知幾何體是由一個四棱錐和半個圓柱組合而成的,所以所求的體積為,故選D.7、A【解析】

求出函數(shù)的周期,函數(shù)的奇偶性,判斷求解即可.【詳解】解:y=cos(2x)=﹣sin2x,是奇函數(shù),函數(shù)的周期為:π,滿足題意,所以A正確y=sin(2x)=cos2x,函數(shù)是偶函數(shù),周期為:π,不滿足題意,所以B不正確;y=sin2x+cos2xsin(2x),函數(shù)是非奇非偶函數(shù),周期為π,所以C不正確;y=sinx+cosxsin(x),函數(shù)是非奇非偶函數(shù),周期為2π,所以D不正確;故選A.考點:三角函數(shù)的性質(zhì).8、A【解析】

該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,從而可得關(guān)于參數(shù)的不等式組,解之可得結(jié)果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,則,解不等式組,得.故本題正確答案為A.【點睛】本題考查一元二次不等式恒成立問題,考查一元二次函數(shù)的圖象與性質(zhì),注意數(shù)形結(jié)合的運用,屬基礎(chǔ)題.9、A【解析】

根據(jù)公式,向量在向量上的投影等于,計算求得結(jié)果.【詳解】向量在向量上的投影等于.故選A.【點睛】本題考查了向量的投影公式,只需記住公式代入即可,屬于基礎(chǔ)題型.10、C【解析】

根據(jù)交集定義直接求解可得結(jié)果.【詳解】根據(jù)交集定義知:故選:【點睛】本題考查集合運算中的交集運算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、②【解析】

對①,可令求出的通式,再進行判斷;對②,將代入檢驗是否為0即可【詳解】對①,令得,可令,,①錯;對②,當時,,②對故正確序號為:②故答案為②【點睛】本題考查三角函數(shù)的基本性質(zhì),屬于基礎(chǔ)題12、34【解析】試題分析:根據(jù)輾轉(zhuǎn)相除法的含義,可得238=2×102+34,102=3×34,所以得兩個數(shù)102、238的最大公約數(shù)是34.故答案為34.考點:輾轉(zhuǎn)相除法.13、3【解析】

易知直線過定點,再結(jié)合圖形求解.【詳解】依題意得直線過定點,如圖:若兩直線將圓分成三個部分,則直線必須與圓相交于圖中陰影部分.又,所以的取值范圍是;當直線位于時,劃分成的三個部分中有兩部分的面積相等.【點睛】本題考查直線和圓的位置關(guān)系的應(yīng)用,直線的斜率,結(jié)合圖形是此題的關(guān)鍵.14、4【解析】

先計算a5【詳解】aaa故答案為4【點睛】本題考查了等比數(shù)列的計算,意在考查學生的計算能力.15、或【解析】

根據(jù)三角函數(shù)的性質(zhì)求解即可【詳解】,如圖所示:則故答案為:或【點睛】本題考查由三角函數(shù)值求解對應(yīng)自變量取值范圍,結(jié)合圖形求解能夠避免錯解,屬于基礎(chǔ)題16、【解析】

由反余弦函數(shù)的值域可求出函數(shù)的值域.【詳解】,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查反三角函數(shù)值域的求解,解題的關(guān)鍵就是依據(jù)反余弦函數(shù)的值域進行計算,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2).【解析】

(1)由二倍角公式可化函數(shù)為,結(jié)合正弦函數(shù)的性質(zhì)可得;(2)先求得的增區(qū)間,其中,此區(qū)間應(yīng)包含,這樣可得之間的不等關(guān)系,利用>0,得的范圍,從而得,最終可得的最大值.【詳解】解法1:(1)因為圖象的相鄰兩條對稱軸的距離為,所以的最小正周期為,所以正數(shù).(2)因為,所以由得單調(diào)遞增區(qū)間為,其中.由題設(shè),于是,得因為,所以,,因為,所以,所以,正數(shù)的最大值為.解法2:(1)同解法1.(2)當時,因為在單調(diào)遞增,因為,所以于是,解得,故正數(shù)的最大值為.【點睛】本題考查二倍角公式,考查三角函數(shù)的性質(zhì).解題關(guān)鍵是化函數(shù)為一個角的一個三角函數(shù)形式,即形式,然后結(jié)合正弦函數(shù)的性質(zhì)求解.18、(1)(2)見證明;(3)【解析】

(1)根據(jù)指數(shù)函數(shù)定義得到,檢驗得到答案.(2),判斷關(guān)系得到答案.(3)利用函數(shù)的單調(diào)性得到答案.【詳解】解:(1)∵函數(shù)是指數(shù)函數(shù),且,∴,可得或(舍去),∴;(2)由(1)得,∴,∴,∴是奇函數(shù);(3)不等式:,以2為底單調(diào)遞增,即,∴,解集為.【點睛】本題考查了函數(shù)的定義,函數(shù)的奇偶性,解不等式,意在考查學生的計算能力.19、(1)3,4,1;(2)元.【解析】

(1)由題意,根據(jù)周長、三邊關(guān)系、勾股定理,a,b,c,建立方程組,解得即可.(2)根據(jù)題意,旋轉(zhuǎn)得到的幾何體為由底面半徑為米,母線長分別為米3和4米的兩個圓錐所組成的幾何體,計算幾何體的表面積再乘單價即可求解.【詳解】(1)由題意得,,所以,又,且,二者聯(lián)立解得,,所以a,b,c的值分別為3,4,1.(2)繞其斜邊旋轉(zhuǎn)一周得到的幾何體為由底面半徑為米,母線長分別為米3和4米的兩個圓錐所組成的幾何體,故其表面積為平方米.因為每平方米油漆的造價為1元,所以所涂的油漆的價格為元.所涂的油漆的價格為:元.【點睛】本題考查三角形三邊關(guān)系及旋轉(zhuǎn)體表面積的應(yīng)用,考查計算能力與空間想象能力,屬于基礎(chǔ)題.20、(1)(2)【解析】

試題分析:(1)由已知條件,利用等差數(shù)列的前n項和公式和通項公式及等比數(shù)列的性質(zhì)列出方程組,求出等差數(shù)列的首項和公差,由此能求出數(shù)列{an}的通項公式;(2)由題意推導出bn=22n+1+1,由此利用分組求和法能求出數(shù)列{bn}的前n項和.詳解:(Ⅰ)設(shè)等差數(shù)列的公差為.因為,所以.①因為成等比數(shù)列,所以.②由①,②可得:.所以.(Ⅱ)由題意,設(shè)數(shù)列的前項和為,,,所以數(shù)列為以為首項,以為公比的等比數(shù)列所以點睛:這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關(guān)系,求表達式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論