版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
arXiv:2307.04721v1[cs.AI]10Jul2023
2Dgridswithpatternsthatevokeabstractconcepts(e.g.,infilling,counting,it,:0,0ip,:0,0ip,t,:0,0androtatingshapes).Eachproblemprovidesasmallnumberofinput-output#,,examples,followedbytestinput(s)forwhichtheobjectiveistopredictottt,0thecorrespondingoutput.Mostmethods(basedonprogramsynthesis)are#,,00,,00,,0Bmanuallyengineeredwithdomain-specificlanguages[21,22,23,24]or0@evaluatedonsimplifiedextensionsorsubsetsofthebenchmark[
25
,
26
,
27
].Fig.1:LLMsout-of-the-boxEnd-to-endmachinelearningmethodsonlysolveahandfuloftestproblemscancomplete(highlighted)[
28
];however,ourexperimentsindicatethatLLMsin-contextpromptedincomplexARCpatterns[
20
]thestyleofASCIIart(see
Fig.1
)cancorrectlypredictsolutionsforupto85expressedinarbitrarytokens.(outof800)problems–exceedingsomeofthebestperformingmethodstodate[
21
,
22
,
24
],without
LargeLanguageModelsasGeneralPatternMachines
SuvirMirchandani1,FeiXia2,PeteFlorence2,BrianIchter2,DannyDriess23,MontserratGonzalezArenas2,KanishkaRao2,DorsaSadigh12,AndyZeng2
1StanfordUniversity,2GoogleDeepMind,3TUBerlin
https://general-pattern-machines.github.io
Abstract:Weobservethatpre-trainedlargelanguagemodels(LLMs)arecapableofau-toregressivelycompletingcomplextokensequences–fromarbitraryonesprocedurally
generatedbyprobabilisticcontext-freegrammars(PCFG),tomorerichspatialpatternsfoundintheAbstractReasoningCorpus(ARC),ageneralAIbenchmark,promptedinthestyleofASCIIart.Surprisingly,patterncompletionproficiencycanbepartiallyretainedevenwhenthesequencesareexpressedusingtokensrandomlysampledfromthevocabulary.Theseresultssuggestthatwithoutanyadditionaltraining,LLMscanserveasgeneralsequencemodelers,drivenbyin-contextlearning.Inthiswork,weinvestigatehowthesezero-shotcapabilitiesmaybeappliedtoproblemsinrobotics–fromextrapolatingsequencesofnumbersthatrepresentstatesovertimetocompletesimplemotions,toleast-to-mostpromptingofreward-conditionedtrajectoriesthatcandiscoverandrepresentclosed-looppolicies(e.g.,astabilizingcontrollerforCartPole).Whiledifficulttodeploytodayforrealsystemsduetolatency,contextsizelimitations,andcomputecosts,theapproachofusingLLMstodrivelow-levelcontrolmayprovideanexcitingglimpseintohowthepatternsamongwordscouldbetransferredtoactions.
Keywords:largelanguagemodels,in-contextlearning,languageforrobotics
1Introduction
Largelanguagemodels(LLMs)aretrainedtoabsorbthemyriadofpatternsthatarewovenintothestructureoflanguage.Theynotonlyexhibitvariousout-of-the-boxcapabilitiessuchasgeneratingchainsofreasoning[
1
,
2
],solvinglogicproblems[
3
,
4
],andcompletingmathpuzzles[
5
],butalsohavebeenappliedinroboticswheretheycanserveashigh-levelplannersforinstructionfollowingtasks[
6
,
7
,
8
,
9
,
10
,
11
,
12
],synthesizeprogramsrepresentingrobotpolicies[
13
,
14
],designrewardfunctions[
15
,
16
],andgeneralizeuserprefer-ences[
17
].Thesesettingsrelyonthefew-shotin-contextexamplesintextpromptsthatspecifythedomainandinput-outputformatfortheirtasks[
18
,
19
],andremainhighlysemanticintheirinputsandoutputs.
Akeyobservationofourwork–andperhapscontrarytothepredominant
intuition–isthatanLLM’sabilitytorepresent,manipulate,andextrapolate
moreabstract,nonlinguisticpatternsmayallowthemtoserveasbasicversions
ofgeneralpatternmachines.Toillustratethisidea,considertheAbstract
ReasoningCorpus[
20
],ageneralAIbenchmarkthatcontainscollectionsof
additionalmodeltrainingorfine-tuning.Surprisingly,wefindthisextendsbeyondASCIInumbers,andPreprint.
|
100
2
100
-
···78,76,72,66,60,53,46···
Fig.2:Pre-trainedLLMsout-of-the-boxmayserveasbasicversionsofgeneralpatternmachinesthatcanrecognizeandcompletesequencesofnumericorarbitrary(symbolic)tokensexpressingabstractproblemsinroboticsandsequentialdecision-making.Experimentsshowthattoanextent,LLMscanin-contextlearn(i)sequencetransformations(e.g.,toreasonoverspatialrearrangementsofsymbols,fordynamicsmodelingandnextstatepredictionondownsampledimages),(ii)completionofsimplefunctions(e.g.,toextrapolatekinestheticdemonstrations),or(iii)meta-patternstoimprovereturn-conditionedpolicies(e.g.,todiscoveroscillatorybehaviorstostabilizeaCartPole).
thatwhentheyarereplacedwithamappingtorandomlysampledtokensinthevocabulary,LLMscanstillgeneratevalidsolutions.Theseresultssuggestanintriguinginsight:thatLLMsmayexhibitmoregeneralcapabilitiesofrepresentingandextrapolatingsymbolicpatterns,invarianttothespecifictokensinvolved.Thisisin-linewith–andcomplementaryto–recentobservationsthatusingrandomorabstractlabelmappingsforin-contextclassificationretainssomeperformancecomparedtoground-truthlabels[
29
,
30
].WehypothesizethatthecapabilitiesthatdrivepatternreasoningontheARCmayallowgeneralpatternmanipulationatvariouslevelsofabstractionusefulforroboticsandsequentialdecisionmaking[
31
,
32
],whereinadiversearrayofproblemsinvolvepatternsthatmaybedifficulttoreasonaboutpreciselyinwords.Forexample,aprocedureforspatiallyrearrangingtabletopobjectscouldberepresentedusingarbitrarytokens(see
Fig.2
).Asanotherexample,optimizingatrajectorywithrespecttoarewardfunctioncanbeframedasextrapolatingasequenceconsistingofstateandactiontokenswithincreasingreturns.
Orthogonalandcomplementarytoeffortsthatdevelopmulti-taskpoliciesbypre-trainingonlargeamountsofrobotdata[
33
],orroboticsfoundationmodels[
34
]thatcanbefine-tunedfordownstreamtasks[
35
,
36
,
37
],ourgoalisinsteadto(i)assessthezero-shotcapabilitiesthatLLMsmayalreadycontaintoperformsomedegreeofgeneralpatternmanipulation,and(ii)investigatehowtheseabilitiescanbeusedinrobotics.Thesecapabilitiesarecertainlynotsufficienttoreplacespecializedalgorithms;nonetheless,theyareusefultocharacterize,anddoingsomayhelpinformprioritiesfortraininggeneralistmodelsinrobotics.
WeassessLLMsaspatternmachinescategorizedintothreeareas:sequencetransformation,sequencecompletion,andsequenceimprovement(see
Fig.2
).First,weshowthatLLMsarecapableofgeneralizingcertainsequencetransformationsofincreasingcomplexitywithadegreeoftokeninvariance,andpositthatthiscancarryovertospatialreasoningcapabilitiesinrobotictasks.Next,weassessLLMs’abilitytocompletepatternsfromsimplefunctions(e.g.,sinusoids)andshowthiscanbeappliedtorobotictaskslikeextendingawipingmotionfromkinestheticdemonstrations,ordrawingpatternsonawhiteboard.Thecombinationofin-contextsequencetransformationandextrapolationfurtherenablesLLMstodobasicformsofsequenceimprovement.Weshowthatprovidingreward-labeledtrajectoriesascontext,coupledwithonlineinteraction,canenableanLLM-basedagenttolearntonavigatethroughasmallgrid,discoverastabilizingCartPolecontroller,andoptimizesimpletrajectoriesviahuman-in-the-loop“clicker”rewardtraining.Code,benchmarks,andvideoswillbemadeavailableat
https://general-pattern-machines.github.io
.
3
2RelatedWork
Patternreasoningbypromptingpre-trainedLLMswithfew-shotinput-outputexamplesisdrivenbyin-contextlearning[
38
,
39
].Theexamplesserveasaformoftaskspecification,wherethemodelisexpectedtocompletefurtherinstancesofthetaskbysimplypredictingwhatcomesnext.In-contextlearningextendstheconceptof“taskprefixes”(predefinedtask-specifictokensequencese.g.,[
40
]),butswappedinwithactualtaskexamplesinstead.Brownetal.[
39
]observesthatitimproves(inparticular,out-of-distributiongeneralization)fromscalingmodelsize.Thisisincontrasttoscalingmodelsforpre-training+fine-tuning,whichhasbeenshowntonotnecessarilyimproveOODgeneralizationonlanguagetasks[
41
].Nonetheless,despitecompellingOODgeneralizationabilities,in-contextlearningstillcomesatacost,asitcontinuestolagbehindintermsofabsoluteperformanceonbenchmarkscomparedtotask-specificfine-tuning[
38
].
In-contextlearningisexplicitlytrainedforbypackingexamplesfromthesametaskanddatasetintothesamecontextbufferthatisfedasinputtoanLLMwithanunsupervisedautoregressiveobjective[
39
],sometimesreferredtoasmeta-training.However,itcanalsoemergeimplicitlyfromtrainingonunsuperviseddatasetswheretokensexhibitaZipfiandistribution[
42
]onTransformerarchitectures,butnotnecessarilywithrecurrentarchitectures(e.g.,vanillaRNNsorLSTMs)[
42
].Otherworkshaveshownthatin-contextlearningwithTransformerscanlearnsimplefunctionclassesonparwithleastsquares[
43
,
44
],andcangeneralizetoaseeminglyunboundednumberoftasks(whentrainedontasksfromthesametaskfamily)betterthanmultitaskMLPs[
45
],withBayesianinterpretationsofthisphenomenon[
46
][
47
].
In-contextlearningoccursduringinferencewithoutgradientupdatestotheweightsofthemodel,andcanbedifferentiatedfromin-weightslearning,whichreliesoninformationstoredintheweightsofthemodelduringLLMtraining[
48
](andcanbeusefulforcompletiontaskssuchas“AbrahamLincolnwasborn in”).Chanetal.[
48
]observesthatgeneralizationofin-contextlearningcanbecharacterizedasmore“exemplar-based”(onthebasisofsimilaritytoin-contextexamples[
49
]),asopposedtogeneralizationof in-weightslearningwhichtendstobemore“rule-based”(onthebasisofminimalfeaturesthatsupport categoryboundariesinthetrainingdata[
50
]).ThevastcapabilitiesofLLMs[
39
,
51
,
52
,
53
,
54
]havebeendrivenbyacombinationofbothformsoflearning.Inthiswork,weareparticularlyinterestedinin-context learning,and(dependingonthetask)usingthesemanticpriorsofnumerictokens(e.g.,“0”to“100”)todrivenewcapabilitiessuchasin-contextsequencecompletion(
Section5
)andimprovement(
Section6
).
LLMshavebeenappliedacrossanumberofareasinrobotics–mostrecentlyindecomposinghigh-leveltaskdomaindescriptionsinnaturallanguagetomid-levelstep-by-stepplans[
6
,
7
,
55
,
56
,
57
,
58
],robotcode[
13
,
17
,
14
,
59
],andplanningdomaindefinitionlanguages[
10
].ThesemethodsleveragethesemanticpriorsstoredinLLMstocomposenewplansorparameterizeprimitiveAPIs,butwhetherLLMscandirectlyinfluencecontrol(e.g.,attheleveloftrajectories)inazero-shotmannerremainsanopenproblem.Asareactiontothis,weinvestigatehowthepatternreasoningcapabilitiesofLLMsmaydrivevariouscontroltasks,toextendoroptimizelow-levelactionsequences.Whileitispossibletoexplicitlytrainmodelsforthesecapabilities[
60
,
61
,
62
,
63
],thisworkinsteadfocusesontheinherentabilitiesofLLMsout-of-the-box,whichmayhavedownstreamimplicationsfortheroleoflanguagepre-trainingforbuildinggeneralistembodiedAIsystems.Ourfindingsmayalsobenefitdomainswheredatacollectionisexpensiveordifficulttoscale.CloselyrelatedtoourworkisBrooksetal.[
64
],whichusesanLLMtorepresentarollout-policyandworld-modelin-context,andthenusesmodel-basedQ-learningtodrivepolicyimprovementacrossacollectionoftoyenvironmentswithlinguisticrepresentations.OuruseofLLMsforsequenceimprovementcanbeseenasasimplificationofin-contextpolicyiterationthatsupportsbothlearningfromdemonstrationsandin-contextRL,drivenbythegeneralityofLLMsaspatternmachines.
3LanguageModelsasGeneralPatternMachines
ThecapacityofLLMstoactasgeneralpatternmachinesisdrivenbytheirabilitytoperformin-contextlearningonsequencesofnumericorarbitrarytokens.AnLLMtypicallyrepresentssequencemodelingautoregressively,withadecoder-onlyTransformer[
65
],byfactorizingtheprobabilityofasequencex,whichisasequenceofsymbols(s1,...,sn),intotheproductofconditionalprobabilitiesp(x)=
4
∏?p(si|s1,...,si?1).Toperformin-contextlearning,themodelcanbeconditionedwithapromptthatprovidestheinitialtokensinthesequences1:k=(s1,...,sk)andusesthemodeltocompletesk+1:n.
Theadaptabilityofin-contextlearningliesintheamountofflexibilitythatcanbepackedintos1:k–thispromptsequencecanitselfcontainmanysequences,eachaninput-outputpair,andperhapsadditionaltaskconditioning[
38
,
29
].Specifically,amodelcanin-contextlearntocompleteapromptwhichisasetofNexampless1:k=(x1,x2,...,xN)whereeachxiisavariable-lengthsequence(s,s,...,si).
Ratherthaninvestigatingin-contextlearningwithnaturallanguagetasks[
39
],inthisworkweareinterestedininvestigatingmoreabstractnotionsofnon-linguisticpatterns.ThefollowingsectionsevaluatethesecapabilitiesacrossLLMs,andshowhowtheycanbeusedinrobotics.Byvaryingthenotionofwhateachxishouldbe,wecancharacterizein-contextpatternlearningcapabilitiesintothefollowing3categories.
?SequenceTransformation(
Section4
):eachx1,...,xN?1isasequence-to-sequenceinput-outputpair;i.e.,xi=(xnput,xutput),eachsubsequenceofvariablelength,andxNisthequeryinput(xut).
?SequenceCompletion(
Section5
):ratherthancontaininginput-outputpairs,andratherthancontainingmanyexamplesofdifferentsequences,thepromptx=(s1,...,sk)correspondstodiscretesamplesfromasinglefunction,e.g.,oftheformsi=a·sin(bi),whichcanbeextrapolated.
?SequenceImprovement(
Section6
):eachx1,...,xN?1isacollectionoftrajectories(potentiallylabeledwithcorrespondingtotalrewards),andxNpromptsthemodelto“improve”thesequencesbyinferringabetterone,e.g.,withleast-to-mostprompting[
66
]–thisprocesscanbeiterativeandappliedtoavariety
offormulations,e.g.,offlinetrajectoryoptimizationoronlinein-contextreinforcementlearning.
4SequenceTransformation
LLMsarecapableofin-contextlearningthedistributionoffunctionsthatrepresentsequencetransformationsbycompletingabstractpatternsobservedamongexamplesofinput-outputsequencesxi=(xnput,xutput)ofarbitrarytokens,eachdrawnfromafixedalphabetA.Forexample,supposethatwearegivenastringofinput-outputexamplessuchas“530,35;761,67;923,29;485,”.HereAconsistsoftokensthatrepresentspace-prefixeddigits0–9,acommatokentoseparateinputsfromoutputs,andasemi-colontokentodelineateexamplesfromeachother.Ageneralpatternmachineshouldinferthecompletion“84”byrecognizingthatthepatternistoswapthefirst2tokens,thenremovethe3rd.
WeusetheARCbenchmark[
20
]toevaluateLLMsonsuchsequencetransformations,wherebytokenpatternsaresub-
stantiallymorecomplex,coveringawiderangeofabstractspatialtasks:infilling,counting,translatingandrotatingshapes,etc.Eachtaskcomeswithseveralinput-outputexam-ples(3.3onaverage),and1-3testinputswhichcanberep-resentedas2Dgrids.Sizesbetweeninputsandoutputsmaydifferandarenotprovidedbeforehand,therebyaddingtothedifficultyofapplyingstandardmachinelearningalgorithms,whichtypicallyassumefixedsize.AutoregressiveLLMscanbeusedfortheARCbyflatteningthegridsandpredictingeachnewoutputgriditeminrow-majororder,whichnatu-rallysupportsvariablelengthoutputs.WhileLLMsarenotoriginallytrainedforrasterizingspatialoutputsinthisway,wehypothesizethatageneralpatternmachinewouldbeca-pableofimplicitlyrecognizingthelong-rangedependenciesbetweenrows(usingpositionalencodingasabias[
67
])topickuppatternsthatextendacrossthe2nddimension.
Method
Total(of800)
(d3)text-davinci-003
85
(d3)w/randomA
?44±6
(d2)text-davinci-002[
51
]
64
(p)PaLM[
53
,
54
]
42
(d1)text-davinci-001[
39
]
11
(d1)finetuned
9
Ainoosonetal,2023[
23
]
??130
Kaggle1stPlace,2022
?64
Xuetal.,2022[
22
]
?57
Alfordetal.,2021[
24
]Ferretal.,2021[
21
]
35
32
*Reportedfrom[
22
]outof160object-orientedproblems.
?Numbersaveragedacross5randomlysampledalphabets.**Basedonbruteforcesearchoverarichhand-designedDSL.Tab.1:LLMsout-of-the-boxcansolveanon-trivialnumberofproblemsontheARC,compet-itivewiththebestexistingmethodsusinghand-crafteddomain-specificlanguages[
21
,
24
,
22
].
Result:ARCbenchmark.Ourexperimentsin
Table1
showthatLLMs(PaLM,InstructGPTseriesinacronymsd1-d3)promptedwithinputgridsrepresentedastokensdrawnfromanalphabetofdigits,cancorrectlyinfersolutionsforupto85problems.Surprisingly,thisoutperformsanumberofrecentsystems[
21
,
24
,
22
]basedonprogramsynthesisthatusemanuallyengineereddomain-specificlanguages(DSLs).
5
output:
36
WhileLLMshaveyettosurpassbrute-forcesearch[
23
]tocomposefunctionsfromahandcraftedAPIofgridoperators,LLMsareperhapsthebestperforminggeneralistmethodthatexiststoday.(WeaddresstheimportantcaveatthatpartsoftheARCmaybepresentinthetrainingdataofLLMslaterinthissection.)
Observation:consistenttokenizationmatters.TheARCcanbefoundamongthesuiteoftasksinBIG-Bench[
68
],buthasoftenbeenoverlookedsincemanylanguagemodelsappeartoperformpoorly(nearoratzeroperformance).Weobservethisoccursduetotheformattingofthebenchmark,wheregridelementsarerepresentedasneighboringcharactersinastringi.e.,“8686”(insteadof“8686”).Whilesubtle,thisdifferenceisenoughforcertainByte-PairEncoding(orSentencePiece)tokenizers[
69
,
70
](thatdonottokenizeperdigit)togrouptogethermultiplegridelements(“8”and“6”)intoasingletoken(“86”)whichmapstoadifferenttokenembeddingaltogetherinthevocabulary.Thiscausesinconsistencieswithhowthepatternsareexpressedatthetokenlevel.Forexample,givenataskexpressedinastring“8686,6868;7979,”iftheLLMtokenizergroupstogetherpairsofdigits86,68,79,respectively,thenthesequentialinductivepatternsofthetask(toswapandrepeatindividualdigits)islost.Asimplework-aroundistodirectlypasstokenindicesorembeddingstothelanguagemodel,orusetokenalphabetsunlikelytobegroupedbythetokenizer.Thiswork-aroundgeneralizestootherpatternmanipulationtasksbeyondtheARC;ingeneral,itisimportanttotokenizeinamannerthatisconsistentwiththepatternbeingrepresented.
Observation:tokenmappinginvariance.ThehypothesisthatLLMscanserveasgeneralpatternmachinesstemsfromtheobservationthattheycansurprisinglystillsolveanon-trivialnumberofARCproblemsusingalphabetsAsampledrandomlyfromtheLLM’stokenvocabulary.Forinstance,givenaparticularalphabet:{8→?falls,6→?+#,7→?Ul,9→?Chev,3→?慶,2→?2010},apatternmachineatsufficientproficiencycanbeexpectedtocompletetheprompt“falls+#falls+#,+#falls+#falls;UIChevUIChev,ChevUIChevUI;慶2010慶2010,”bypredicting“2010慶2010慶”.Forexample,text-davinci-003[
51
,
39
]withthefollowingmappingA={0→?offence,1→?Subject,2→?Lub,3→?Fail,4→?Chev,5→?symb,6→?swung,7→?Ul,8→?escalate,9→?Chromebook}solves52ARCproblems,andacross5differentrandomalphabetssolvesanaverageof43.6problems.Interestingly,wefindthattokenmappinginvarianceholdstoanextentonsimplepatterntransformationsforrandomlysampledembeddingsaswell(i.e.,suchthatembeddingsarenotassociatedwithanytokeninthevocabulary;seeAppendix).
Theimplicationsoftokenmappinginvariancearetwo-fold.First,notethatitispossiblethatpartsoftheARC(andotherstaticexamplesofpatterntransformations)arepresentinthetrainingdataofanLLM(i.e.,duetocontamination).Therefore,measuringtheperformanceofLLMsunderrandomalphabetsmayprovideacloserestimateoftheirtrueunderlyingin-contextsequencetransformationcapabilities.(AsadditionalevidencethatLLMs’sequencetransformationabilityisnotsimplyduetomemorization,wealsoprovideanewprocedurally-generatedpatterntransformationbenchmarkwhichwedescribebelow.)
Second,wehypothesizethatthepatternma-nipulationcapabilitieswhichtokeninvarianceimpliescouldhelptodrivepositivetransferfrompatternslearnedacrossInternet-scalelanguagedatatonewmodalitiesorsymbolicrepresentationsforrobotreasoning.Asanexampleofthisidea,(i)
Fig.3
(top)showsagrasp(Skittles)detectorwhichoutputstar-getcoordinateswithinadownsampledimage(with6in-contextexamples),and(ii)
Fig.3
(bottom)showsspatialrearrangementviapre-dictingsimpleforwarddynamicswherethe
Output(Rendered)
Input
Input(Low-Res)Input&Output(Tokens)
input:
676792
868687
916187
929293
879293
629314692
6262.91
44438787
4468112112
93118117118
93
92
87
93
93
12361
12487
12343
12369
118123
input:
63474763777761575862
634241424.237373742
63464646464637374142
63626262626262625842
63636262626262626262
output:
63474763777761575862
633737424.242424242
63535357464242424242
63585862466262624642
63636363626262626262
Fig.3:ExampleLLMpredictionasanin-contextgraspdetector(top)andasimpleforwarddynamicsmodel(bottom).
redbowlmovestothegreenplate(with9in-contextexamplesofdownsampledimagesasinputsandoutputs).Thegeneralityofwhatthearbitrarytokenscouldrepresentmayallowpatterntransformationcapabilities–especiallyasLLMsimprove–tobeleveragedatvariouslevelsofabstractioninrobotics(includingatthelevelofpixelsorrobotjointpositions).Incorporatingmoresemanticpriorsintorepre-sentationsmayalsoboostperformanceandenablefurtherLLM-drivenreasoning(e.g.,reducingvisual
6
Function
ExampleInputs
ExampleOutputs
530
35
remove_second(swap(s1,s2),s3)
761
67
echo(copy(swap(swap(
prepend(removesecond(
6
77815989
1
59897766
swap(echo(s1s2)),s3s4),s5s6s7s8s9s10)
430350238
502383344
Tab.2:IllustrationsoftransformationsinourPCFGbenchmark.Row1showsatransformationcomposedofk=2operationsoverw=3tokens,androw2showsatransformationcomposedofk=8operationsoverw=10tokens,respectively.Foreachtransformationfunction,weshowtwoexampleinputsandthecorrespondingoutputs.
dataintomoresemanticspatialrepresentations).Itmay
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《家裝知識(shí)講座》課件
- 《癲癇本科》課件
- 《家族式增員》課件
- 單位管理制度合并選集【人員管理篇】
- 單位管理制度范例選集人事管理篇十篇
- 《投資經(jīng)濟(jì)學(xué)》課程教學(xué)大綱
- 《現(xiàn)代經(jīng)濟(jì)學(xué)》課程教學(xué)大綱1
- 《小學(xué)分?jǐn)?shù)教學(xué)》課件
- 《電子元件基礎(chǔ)知識(shí)》課件
- 《企業(yè)環(huán)保管理》課件
- 廣東省汕頭市金平區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題
- 2024年度新型紡織纖維
- 培訓(xùn)機(jī)構(gòu)五年發(fā)展規(guī)劃方案
- 《銷售主管競(jìng)聘》課件
- 青少年型青光眼個(gè)案護(hù)理
- 2024年形式與政策論文
- 機(jī)電設(shè)備故障診斷與維修(高職)全套教學(xué)課件
- 建設(shè)銀行新員工培訓(xùn)方案
- 2024年綠色生產(chǎn)培訓(xùn)資料
- 醫(yī)院藥房年終工作總結(jié)
- 整體爬升鋼平臺(tái)模板工程技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論