基時域頻域FFT算法_第1頁
基時域頻域FFT算法_第2頁
基時域頻域FFT算法_第3頁
基時域頻域FFT算法_第4頁
基時域頻域FFT算法_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

基時域頻域FFT算法第1頁,課件共33頁,創(chuàng)作于2023年2月4點序列{2,3,3,2}DFT的計算復雜度復數加法N(N-1)復數乘法N

2如何提高DFT的運算效率?問題的提出第2頁,課件共33頁,創(chuàng)作于2023年2月一般性DFT:直接計算的計算量:N-1復數乘法N對N個不同X[m]復數加法N(N-1)復數乘法N2對一固定的m復數加法如計算1024點DFT:復數乘法次數:N2=10242=220=1048576第3頁,課件共33頁,創(chuàng)作于2023年2月解決問題的思路1.將長序列DFT分解為短序列的DFT2.利用旋轉因子的周期性、對稱性、可約性。第4頁,課件共33頁,創(chuàng)作于2023年2月1)周期性(periodicity)2)復共軛對稱性(complexconjugate)3)當N是偶數時的性質第5頁,課件共33頁,創(chuàng)作于2023年2月解決問題的方法將時域序列逐次分解為一組子序列,利用旋轉因子的特性,由子序列的DFT來實現整個序列的DFT?;?時間抽取(Decimationintime)FFT算法基2頻率抽取(Decimationinfrequency)FFT算法第6頁,課件共33頁,創(chuàng)作于2023年2月3.1基2時域抽取FFT算法算法推導:N=2M時域抽取(Decimationintime)]a][1kx][2lx][][21lxkxa+[][21lxkxa--1(一)算法原理基本蝶形(butterfly)第7頁,課件共33頁,創(chuàng)作于2023年2月算法推導:N=2M時域抽取第8頁,課件共33頁,創(chuàng)作于2023年2月例:]0[X]1[X-11]0[x]1[x2點FFT流圖N=2基2時域FFT流圖的推導第9頁,課件共33頁,創(chuàng)作于2023年2月N=4時域基2FFT流圖的推導-1X[2]X[3]-12點DFT2點DFTx[0]x[3]x[1]x[2]X[0]X[1]2點DFT04W14Wx[0]x[3]x[1]x[2]X[3]X[1]X[2]X[0]-1-1-1-1第10頁,課件共33頁,創(chuàng)作于2023年2月N=8基2時域FFT流圖的推導08W18W28W38W4點DFT4點DFTX[0]X[3]X[1]X[2]X[4]X[5]X[6]X[7]x[0]x[6]x[2]x[4]x[1]x[3]x[5]x[7]-1-1-1-1第11頁,課件共33頁,創(chuàng)作于2023年2月08W18W28W38WX[0]X[3]X[1]X[2]X[4]X[5]X[6]X[7]x[0]x[6]x[4]x[2]x[1]x[5]x[3]x[7]04W14W04W14W-1-1-1-1-1-1-1-1-1-1-1-18點FFT流圖第三級第一級第二級第12頁,課件共33頁,創(chuàng)作于2023年2月(二)算法工作量a][1kx][2lx][][21lxkxa+][][21lxkxa--1一個蝶形計算量:復數乘法1,復數加法2復數乘法:N,NNM2log22=復數加法:N=2M時,分解級數為M,每級蝶形數N/2計算1024點復數乘法次數:DFT:N2=1024

2=220=1048576;FFT:第13頁,課件共33頁,創(chuàng)作于2023年2月(三)流圖規(guī)律1)原位運算(In-placeComputations)a][1kx][2lx][][21lxkxa+][][21lxkxa--1優(yōu)點:節(jié)省存儲空間第14頁,課件共33頁,創(chuàng)作于2023年2月(三)流圖規(guī)律第二級的蝶形系數為,蝶形節(jié)點的距離為2。第一級的蝶形系數均為,蝶形節(jié)點的距離為1。第三級的蝶形系數為,蝶形節(jié)點的距離為4。第M級的蝶形系數為,蝶形節(jié)點的距離為N/2。2)FFT算法流圖旋轉因子規(guī)律第15頁,課件共33頁,創(chuàng)作于2023年2月3)倒序規(guī)律k0k1k2x[k2k1k0]x[000]x[100]x[010]01011]12x[kk0]x[k2k101x[110]x[001]x[101]x[010]x[111]01010101第16頁,課件共33頁,創(chuàng)作于2023年2月例:試利用N=4基2時間抽取的FFT流圖計算8點序列x[k]={1,-1,1,-1,2,1,1,2}的DFT。解:根據基2時間抽取FFT算法原理,8點序列的DFTX[m]可由兩個4點序列的DFTX1[m]和X2[m]表達。如果按照序列x[k]序號的奇偶分解為x1[k]和x2[k],則存在其中x1[k]={1,1,2,1},x2[k]={-1,-1,1,2},X1[m]和X2[m]可通過4點的FFT來計算。第17頁,課件共33頁,創(chuàng)作于2023年2月解:

X1[m]={5,-1,1,-1},X2[m]={1,-2+3j,1,-2-3j}利用上述公式,可得序列x[k]的DFTX[m]為X[m]={6,-0.293+3.535j,1+j,-1.707+3.535j,4,-1.707-3.535j,1-j,-0.293-3.535j}例:試利用N=4基2時間抽取的FFT流圖計算8點序列x[k]={1,-1,1,-1,2,1,1,2}的DFT。第18頁,課件共33頁,創(chuàng)作于2023年2月3.2基2頻域抽取FFT算法頻域奇偶分組第19頁,課件共33頁,創(chuàng)作于2023年2月頻域奇偶分組當m=2r,或2r+1,得到:第20頁,課件共33頁,創(chuàng)作于2023年2月基2頻率抽取蝶形運算的信號流圖基2頻率抽取蝶形運算的信號流圖第21頁,課件共33頁,創(chuàng)作于2023年2月x[3]x[7]x[2]x[6]x[1]x[5]x[0]x[4]3NW-12NW-11NW-1-10NW4點DFT4點DFTX[0]X[6]X[2]X[4]X[1]X[3]X[5]X[7]基2頻率抽取8點信號流圖第22頁,課件共33頁,創(chuàng)作于2023年2月0NW1NW2NW3NW2點DFT-1-1-1-1x[0]x[3]x[1]x[2]x[4]x[5]x[6]x[7]X[0]X[6]X[4]X[2]X[1]X[5]X[3]X[7]0NW2NW2NW0NW-1-1-1-12點DFT2點DFT2點DFT基2頻率抽取8點信號流圖第23頁,課件共33頁,創(chuàng)作于2023年2月基2頻率抽取8點信號流圖第24頁,課件共33頁,創(chuàng)作于2023年2月3.3實序列的FFT算法(二)利用N點復序列的FFT,計算2N點實序列FFT(一)利用N點復序列的FFT計算兩個N點實序列FFT第25頁,課件共33頁,創(chuàng)作于2023年2月已知x

[k],h[k]是實序列,構造N點復序列y[k]=x

[k]+jh[k](一)利用N點復序列的FFT計算兩個N點實序列FFT所以第26頁,課件共33頁,創(chuàng)作于2023年2月(二)利用N點復序列的FFT,計算2N點實序列FFT已知y[k]是2N點實序列,希望用一個N點FFT計算其DFT時域抽取FFT算法:第27頁,課件共33頁,創(chuàng)作于2023年2月3.4IDFT的快速算法第28頁,課件共33頁,創(chuàng)作于2023年2月IDFT的快速算法步驟步驟(1)將X[m]取共軛(3)對(2)中結果取共軛并除以N第29頁,課件共33頁,創(chuàng)作于2023年2月例:已知x[k]={1,2,3,4}利用頻域抽樣流圖,計算12344-262j10-2-2+2j-2-2jDFT{x[k]}={10,-2+2j,-2,-2-2j}利用頻域基2-FFT流圖計算DFT第30頁,課件共33頁,創(chuàng)作于2023年2月{4,8,12,16}{4,16,12,8}利用FFT流圖計算IFFT第31頁,課件共33頁,創(chuàng)作于2023年2月M=4;N=51;n=-(N-1)/2:(N-1)/2;x=[ones(1,M+1),zeros(1,N-2*M-1),ones(1,M)];X=fft(x,N);subplot(2,1,1);stem(n,fftshift(x));

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論