版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Economics205,Fall2010
QuizI
August27,2010
Instructions.Trytoanswerall3problems.(Readallofthequestionsnow
andstartontheonesthatseemeasiest).Makeyouranswersascompleteand
rigorousaspossible.Wlienyoucomputeaderivativesay“Thisstepfollowsfrom
thechainrule^^or“Becausethederivativeofasumisthesumofthederivatives
...Whenyoutakealimit,invokethenecessaryresults(orgiveadirectproof
withes).
Informalandintuitiveargumentsarebetterthannothing.
1.Let/beadifferentiablefunction.Calculatethederivativeofthefunction
hdefinedineachoftheproblemsbelow.Ifyouneedadditionalassump-
tions,makethemexplicit:
(a)h(x)=log/(x2)
(b)h(x)=/(logx)
(c)/i(x)=elog工
2.Calculatethelimitsindicatedbelow.
(a)lim7Too
(b)lim①T5
(c)lima._>0+xlogx.
3.Letf:[0.1]—>R.
(a)Provethatif
|a-41/2>(a)-/(b)|foralla,6€[0,1],(1)
thenfiscontinuouson(0,1).
(b)Giveanexampleofanon-constantfunctionfthatsatisfies(??).
[Provethatyourexamplesatisfiesthecondition.]
1
Economics205.Fall2010
QuizI,PossibleAnswers
August27,2010
Comments.Scoresoutof100.Range:46-96.Average:81,Median:83.
Allocation:40/40/30.
Firstquestion:OK,butsomepeopledidnotnoterangeofvalidity.Third
question:Thisiswheremostpeoplelostpoints.
Minimal(butpositive!)deductionfornotprovidingjustification.Deduc-
tionsfornotexplainingyouranswerswillincreaseonfutureassessments.
1.Let/beadifferentiablefunction.Calculatethederivativeofthefunction
hdefinedineachoftheproblemsbelow.Ifyouneedadditionalassump-
tions,makethemexplicit:
(a)h(x)=log/(a;2).)bytheChainRule(twice).You
canonlydothiscomputationwhen/(T2)>0.
(b)h(x)=/(logT).九'(①)=/'(log①)//bythechainruleandtherule
fordifferentiatingloga?.Needx>0forhtobedefined.
logx
(c)h(x)=e=xysoh!(x)=1
2.Calculatethelimitsindicatedbelow.
i;m—n
(a)UIURTOO3rl3+6-u
Givene>0,letAT=1/e
n2—1n2—1
0<―-<—<6.
3n3+6n3
(b)“ru;工二十5言=2.3.
(Limitofcontinuousfunctionratioofpolynomialswithnonzero
denominator.Sobycontinuity,justevaluate.)
lima._+0+xlogx=lim£ToiCanuseL'Hopital'sRuleonlast
expressiontoobtain:
limlim等1而4=0
Z
6T0+CT0+l/xX->0+—1/X
3.Letf:[0?1]tR.
1
(a)Provethatif
1/2
\a-b\>|/(Q)-/(d)|foralla,be[0,1],(1)
thenfiscontinuouson(0,1).
Theinequalitysaysthat-f(a)-f(b)-is“sandwiched”betweenthe
constantfunctionequaltozeroandthefunctiong(x)=\a—①?
Sincegiscontinuousata(acceptedwisdom),linib->a1/(。)一/(6)|=
0.Thisiswhatweneededtoshow.
(b)Giveanexampleofanon-constantfunctionfthatsatisfies(1).
[Provethatyourexamplesatisfiesthecondition.]
Therearemanypossibilities.f(x)=xworksbecause\a—>
\a—b\foralla,6€[0,1].(Toprovethisassertionyoucannotethat
theright-handsideoftheinequalityisnon-negative,sotheinequality
isequivalentto
|a-6|>|a-6|2
(squarebothsides).Thisinequalityholdswhena=bandotherwise
isequivalentto1>\a-b|,whichwillholdwhena,b£[0.1].
2
Economics205.Fall2010:QuizII
September3.2010
Instructions.Trytoanswerallthreeproblems.(Readallofthequestions
nowandstartontheonesthatseemeasiest.)Thinkbeforeyouwrite.You
shouldbeabletodoeverythingwithoutmuchtediouscomputation.Makeyour
answersascompleteandrigorousaspossible:givereasonsforyourcomputations
andproveyourassertions.Informalandintuitiveargumentsarebetterthan
nothing.
1.Decidewhethereachofthestatementsbelowistrue.Ifthestatementis
true,thenproveit.Ifthestatementisfalse,thengiveacounterexample.
Ineachpart/:R—>IR,istwicecontinuouslydifferentiableandstrictly
concave.
(a)x=1cannotsolveminf(x)subjecttoxe[0,1].
(b)If⑴=0,then1isalocalmaximumoff.
(c)Thereexistsnofunctionf(satisfyingtheassumptionsoftheprob-
lem)suchthat/(0)=/(I)=f⑵.
-ioo-
2.LetA=001.
_010_
(a)FindtheeigenvaluesofA.
(b)Findamaximalcardinalitysetoflinearlyindependent,eigenvectors
forA.Associatetheseeigenvectorswiththeeigenvaluesyoufound
inParta.
(c)IsAdiagonalizable?
(d)Ifthematrixisdiagonalizable,findamatrixPsuchthatA=
PDPT,whereDisdiagonal.
(e)StatewhetherthequadraticformQ(N)=xlAxispositive(semi-)
definite,negative(semi-)definite,orindefinite.
3.Letw=(1,4,0)andv=(1,0,2).
(a)Findtheequationofthelinethatpassesthroughthepointwinthe
directionv.
(b)Findtheequationofahyperplanethatcontainsthepointwand
containsthelineyoufoundinpart(a).
(c)Findanequationofalinethatiscontainedinthehyperplanethat
youfoundinpart(b),containsthepointw,andisorthogonaltothe
lineyoufoundinpart(a).
1
Economics205,Fall2010:QuizII,PossibleAnswers
September3.2010
Comments.100pointspossible,range39-99,median82,mean76.
1.Somepeopledidnotknowthedefinitionofconcavity.Apparentlysome
peopleclaimedthatf<0impliesthatfismonotonicallyincreasing.
Nope(try—x2).Concavefunctionstypicallyincreaseandthendecrease
(graphslooklikeanupside-down"U."Thethirdpartyisprobablyeasiest
ifyonjustusethedefinition.
2.Rememberthatwhenyouhaveane-valueformultiplicitykyouneedto
findklinearityindependentassociatede-vectorstodiagonalize.
3.Answerstopart(c)werenotgood,apparentlyduetotimepressure.
1.(a)False.Pickafunctionthatisstrictlyconcaveanddecreasing,for
examplef(x)=1—x2.On[0,1]thisfunctionattainsitsunique
minimumat①=1.
(b)True.Infact,itwillbeaglobalmaximum.
(c)True.Bystrictconcavity,/(I)>.5/(0)+.5/(1).
2.(a)Eigenvaluesare—1and1,themultiplicityoftheeigenvalue1istwo.
(b)Twolinearlyindependenteigenvectorsassociatedwiththeeigenvalue
1are:(1,0,0)and(0,1,1).Aneigenvectorassociatedwiththeeigen-
value—1is:(0,1,—1).
(c)Aisdiagonalizable(symmetric).
(d)OnepossiblePisthematrixwithcolumnsequaltonormalizedeigen-
'100-
vectors:P—°尖壺.Inthiscase,P-1=Pl=Pand,
100
ifD=010,thenA=PDP-1.
00-1
(e)QuadraticFormisIndefiniteSinceithaspositiveandnegativeeigen-
values.
3.Letw=(1,4,0)andv=(1,0,2).
(a)Findtheequationofthelinethatpassesthroughthepointwinthe
directionv.
Point:w=(1,4,0);Direction:v=(1,0,2).Equation:w+tv.
(b)Findtheequationofahyperplanethatcontainsthepointwand
containsthelineyoufoundinparta.
1
Point:w;Orthogonaldirection:Anythingorthogonaltov.Forex-
ample:u=(0,1,0).
Equation:"?(①一僅)=0or①2=4.Therearelots(infinitelymany)
ofalternativesolutions.
(c)Findanequationofalinethatiscontainedinthehyperplanethat
youfoundinpartb,containsthepointw,andisorthogonaltothe
lineyoufoundinparta.
Point:w;Direction:mustbeorthogonaltobothvandu.Thatis,
ifthedirectionisp=(P1,P2,P3),thenp?v=0(thisguarantees
thatthelineisorthogonaltothelineinparta)andp-u=0(this
guaranteesthatthelineisintheplanedescribedinpartb).Hence
pi+2P3=0andp?=0,soadirectionisp=(2,0,—1)andequation
forlineis:
w+tp
2
Economics205,Fall2010
QuizIII
September10,2010
Instructions.Ti*ytoanswerallpartsofbothquestions.Makeyouranswers
ascompleteandrigorousaspossible.Informalandintuitiveargumentsare
betterthannothing,butpleaseprovidecompletejustification.
1.LetK={(x^y):x2+y2<4}.
(a)ProvethatKisconvex.
(b)Showthat(3,1)隼K.
(c)FindtheequationofahyperplanethatseparatesKfrom(3,1).
(d)Showthat(%(),如)=(0,2)satisfiesx2-\-y2=4.
(e)Isitpossibletosolvetheequationx24-7/2=4foryasadifferentiable
functionofxfor(rr.y)near(0,2).Ifso.writey=Y(x)andfind
y'(o).
(f)Isitpossibletosolvetheequationx2-\-y2=4forxasadifferentiable
functionofyfor(rr,y)near(0.2).Ifso,writex=X(y)andfind
X").
2.Amonopolyfirmcaninfluencedemandbyadvertising.Ifthefirmbuys
aunitsofadvertising,itcansellqunitsatthepriceP(a,q)=a(15—q).
Thepriceofaunitsofadvertisingisaa2dollars.Itcoststhemonopolist
0q2toproducequnits.
(a)Writetheprofitfunctionofthefirm.
(b)Showthatwhena=5and3=2.5thesolutiontothemonopolist
profitmaximizationproblemistoseta=5andq=5.
(c)Isitpossibletodescribehowtheprofitmaximizingvaluesofqand
achangeasaand/3change(nearthepointinpart(b))?Ifso,
computethederivativesofqandaasfunctionsofaandBnear
=(5,).
(d)Ifaincreasesto5.01and0decreasesto2.48willthemonopolisfs
outputincrease?
1
Economics205,Fall2010
QuizIIIPossibleAnswers
September10,2009
Comments.Range:50-98,Median:73,Mean:75.Larrysaysthatmostdid
wellonthefirstquestion.Hesaidthatsomepeopleconfusedthedefinition
ofconvexityofasetwithconvexityofafunction.Thedefinitionsarerelated,
ofcourse,butdifferent.Hereportedthattherewereproblemsfiguringout
whatequationsneededtobedifferentiatedtoanswerthelastpartsofquestion
two.Istillmaintainthatitiseasierandmoreintuitivetodotheseproblems
directlyratherthanattemptingtoforcethingsintotheimplicitfunctiontheorem
formula.Thesecondquestionillustratesanimportanttechnique.
1.LetK={(x,y):x2+y2<4}.
(a)ProvethatKisconvex.
Oneanswer:h(z)=/jsaconvexfunction(secondderivativeposi-
tive),so
(Xz+(1-A)?)2<A/+(i_A)(?)2.
Itfollowsthatif(z,y),(a/,yf)€K,and(〃,v)=(Xr+(1—X)xf,Xy+
(1-W),then
u2<Xx2+(1—A)(xz)2,
v2<AT/2-F(1-A)(y)2,
andhenceu2+v2<4.
(b)Showthat(3,1)隹K.
9+1>4
(c)FindtheequationofahyperplanethatseparatesKfrom(3,1).
Theproofoftheseparatingliyperplanetheoremusethedirection
ofthelinethatconnects(3.1)tothepointinKclosestto(3,1).
Thispointturnsouttobe(x^y)=v\4(3.1).Sothehyperplane
wouldhavenormalinthedirection(3,1)—(①,g)andpassthrough
apointonthesegmentconnecting(①,g)to(3,1).Asimplerto
describeseparatinghypcrplaneisi=2.5.EverypointinKisin
{(x^y)\x<2.5},while3>2.5.
(d)Showthat(%yo)=(0,2)satisfiesx2+y2=4.
0+4=4.
1
(e)Isitpossibletosolvetheequationx2-^-y2=4for?/asadifferentiable
functionofxfor(x,y)near(0,2).Ifso.writey=Y(x)andfind
⑵.
Itispossiblebecauseatthispointthederivativeofx2+y2with
respecttoyisnotzero.Yf(2)=0.
(f)Isitpossibletosolvetheequationx2-\-y2=4forxasadifferentiable
functionofyfor(x,y)near(0.2).Ifso,writex=andfind
X").
Itisnotpossiblebecauseatthispointthederivativeofx2+y2with
respecttoxiszero.
2.Amonopolyfirmcaninfluencedemandbyadvertising.Ifthefirmbuys
aunitsofadvertising,itcansellqunitsatthepriceF(a,q)=a(15—q).
Thepriceofaunitsofadvertisingisaa2dollars.Itcoststhemonopolist
(3q2toproducequnits.
(a)Writetheprofitfunctionofthefirm.
P(a,q)q—aa?—.
(b)Showthatwhena=5and8=.5thesolutiontothemonopolist's
profitmaximizationproblemistoseta=10andq=5.
First-orderconditions:
a(15—2q)—2/3q=0and(15—q)q—2aa=0.
Youcancheck(bydifferentiatingagain)thattheobjectivefunction
isstrictlyconcave,sofirst-orderconditionscharacterizealocalmaxi-
mum.Profitsarezeroontheboundary(qora=0),sotheequations
describeaglobalmaximum.
Theseequationsaresatisfiedatthegivenpoint(checkbysubstitu-
tion).
(c)Isitpossibletodescribehowtheprofitmaximizingvaluesofqand
achangeasaandBchange?Ifso,computethederivativesofqand
aasfunctionsofaand§near(q,a,a,0)=(5,5,5,2.5).Derivatives
withrespecttoa:
(15-2Q)OIQ-2QOI4=2Aand-2(4+0)OiQ+(15-2Q)0i4=0.
or
5£)iQ-lODiA=10and-15D1Q+5J9M=0
soZ)iQ(5,2.5)=-.4andDM(5,2.5)=-1.2
Similarly,derivativeswithrespectto/?:
5D2Q-10V2Q=0and-15D2Q+5D2A=10.
so02Q(5,2.5)=—.8and£>2-(5,2.5)=—.4(Soitispossible.)
2
(d)Ifaincreasesto5.01and(3decreasesto2.48willthemonopolisfs
outputincrease?
Thequestionasksfor.01(2Q—2D?Q)=.01(—.4—2(—.8))=
.01(1.2)>0,sotheanswerisyes.
3
MathematicsforEconomists
Economics205,Fall2010
GeneralInformation
Instructor:JoelSobel
Office:311Economics
OfficeHours:Afterclass
Phone:(858)534-4367
Email:jsobel@
Homepage(withlinktohandoutsforcourse):
/%7Ejsobel/205fl0/205fl0home.htm
TeachingAssistant:LawrenceSchmidt(lschmidt@)
Oi'ganization
Theclassmeetsfrom8:30to(approximately)11:00everyweekdayfromMonday,August23
throughMonday,September13,withthefollowingexception:ThereisnoclassonSeptember6.I
willalsousetimebetween11:00and11:30ifnecessaryforquizzesortostayonschedule.
Inaddition,theclassroomwillbeavailablefrom1:00-4:00forstudysessionsonmostdays.On
somedaystherewillbeorganizedproblemsessionsledbytheTA.Onotherdays,studentscanuse
theroomtoworktogetheronclassmaterial.
Description
Thiscourseisarapidoverviewoftopicsincalculus,advancedcalculus,optimization,andlinear
algebrathatarerelevanttoeconomictheory.Itprovidessomeofthenecessarymathematical
backgroundtobeginthecoregraduatesequence.Thecoursecoversalargeamountofmaterialata
relativelyhighlevelofrigor.
Ifyouhavemasteredthematerialinstandardupper-divisionanalysisandlinearalgebraclasses,
thenthisclassshouldcontainlittlethatisnew.Ifithasbeenalongtimesinceyouhaveused
calculus,thenthecoursewillbedifficult.Ifyouhaveneverusedcalculus,thenthecoursemaybe
impossible.
Toavoidmisunderstandings,letmeemphasizethattheclassisnotsimplyareviewoflower-
divisioncalculus.Nordoesitcoverall(orevenmost)ofthemathematicsusedinthecoreclasses.
Requirements
Themainevaluationwillbeathreehour,closedbook,closednotesexaminationtentatively
scheduledforThursday,September16from8:30to11:30.(Thistimebecomesofficialifthereareno
complaintstoday.)Yourgradewillbethemaximumofyourgradeonthefinalexamination,anda
weightedaverageofyourfinalexamgrade(75%),andyourperformanceonquizzes.Youmust,pass
thefinalexaminationinordertoenrollinEconomics200A.OfficiallythiscourseispartoftheFall
Quarter,soyouhavetheunusualabilitytoenrollintheclassafterityoucompletedit.
Problemsareanecessarypartoflearningthematerial.Iwillsuggestproblemsandthereare
additionalproblemspostedonthewebpage.Itisimportantthatyoufindexercisesthatareatyour
level-challenging,butnotimpossible.Ifthesuggestedproblemsaretooeasyortoohard,letme
knowandI'llfindsomethingappropriateforyou.Relevantproblemsarealsoavailableinthetexts.
Therewillbealistofproblemspostedonthewebpage.Iwillsuggestproblemsfromtextsinmost
classperiods.Youshouldattempttodothemthroughoutthecourse.
1
TextsandCourseMaterial
(SB)C.SimonandL.Blume,MathematicsforEconomists
(N)W.Novshek,MathematicsforEconomists
(D)A.Dixit,OptimizationinEconomicTheory,2ndedition
(MA)K.G.Binmore,MathematicalAnalysis
(C)K.G.Binmore,Calculus
(CH)A.Chiang,FundamentalMethodsofMathematicalEconomics
(SB)shouldbeavailableintheUniversityBookstore.Ihavecopiesofallbooks(andothers).In
additiontothesebooks,mywebpagecontainscoursenotespreparedbyJoelWatsonandme.These
areaworkinprogress,filledwitherrors,inconsistentnotation,andirrelevantmaterial.Iwillmake
anefforttoupdateandaugmentthesenotesthroughouttheclass.
Therearemanybooksthatcoverthebasicmaterialofthiscourse.Feelfreetouseanotherbook
asaprimaryreference.(Ifyouarenotsurewhetheranotherbookisadequate,thencheckwithme.)
(SB)isofficiallythetextforthecourse.Ithasthefollowingstrengths:itcontainsmanyeconomic
examples;itcoversthetopicsthatIintendtocover;itcoversothermaterialthatyoushouldknow;it
hasmanyproblemsandsolutions.Ontheotherhand,itispoorlyorganizedanditsleveloftreatment
isuneven.Mylectureswillbequitedifferentfromthetextmaterial.(N)isconcise,coversmost
ofthetopics,andhasmanyproblemsandsolutions.Itscoverageofone-variablecalculusisbrief
anditsapproachtooptimizationismechanical.(D)isaniceintroductiontooptimizationfromthe
perspectiveofeconomics.(MA)isaconciseintroductionto“advanced”one-variablecalculus.It
presentsdefinitionsandtheoremswithcareandprovidesanintroductiontoproofs.Itisslightly
moreadvancedthanthecoursewillbe.Itmaybeagoodplacetolookifthematerialinthefirst
weekseemstoeasy.(C)ismorebasicthan(MA).Ithasreasonablecoverageofmostofthetopics
ofmulti-variablecalculus.(CH)isastandardreferenceforcoursesinmathematicsforeconomists,
butIfindittoomechanical.Itmaybeagoodplacetolookifthelecturesseemdifficult.Dixit
containsmaterialrelevanttotheoptimizationtopics.
Paternalism
WhenIstartedteachingthiscourse(beforeyouwereborn),Ijustintroducedmyself,described
thetopics,andbeganteachingmatii.Gradually,Ispentmoreandmoretimetellingtheclassthings
thatIthoughtwouldhelpitadjusttothegraduateprogram.NowIhavelearnedthatthefirstday
ofclassisnotagoodtimetogetadviceand,besides,you345161hearsimilaradvicefromothers.Here
isashortlistofrecommendations.Consultthelistwhenyouareready.
1.Youcannotlearnmathematicsbyreadingabook.Itisbettertoworkproblems.Itisbetter
stilltoposeproblemsyourselfandtrytosolvethem.
2.PerformanceinEcon205isrelatedtohowmuchmathyoualreadyknow.Itisagoodpredictor
ofsuccessinfirst-yearcourses.Itisabadpredictorofthequalityofyourdissertation.
3.Thehardestpartofgraduateschoolisstartingyourresearchproject.(Inparticular,itisnot
Econ205.)
4.Nooneonthefacultywantsyoutofail.
5.BenicetoRebecca,Rafael,Nieves,
6.Youdonotneedtoknoweverythingalready.
2
7.Workandplaywithclassmates.You'lllearnmorefromthemthanyourprofessors.Some
ofthemwillbefriendsandcolleaguesforlife.
8.Figureoutwhatisimportanttoyou.
9.Goodresearchprojectsarenotscarce,buttheyarehardtofind.
TopicalOutlineandReferences
ThetableonthenextpageliststhetopicsthatIhopetocover.(Irarelyreachdifferential
equationsandintegration.)Itrelatesthetopicstopagesinfiveofthetextsmentionedabove.The
numberofpagesdevotedtoeachtopicvariesdrasticallyfromtexttotext.Thequalityandthelevel
oftreatmentvaryaswell.
TopicChMACNSB
BasicConcepts132-441-48:65-841-2;36-423-9;847-57
Continuity145-4985-912-3;42-4410-21
Differentiability128-32;149-7492-1003-522-34;39-42;70-4
MeanValueTheorems254-62101-85-6822-32
Extrema,Concavity43-6;51-69
One-variablewrapup138-4375-103
Vectors54-871-32199-204;209-30
Eigenvalues188-94;579-84;601-7;609-15
QuadraticForms375-86;398-404:620-32
VectorCalculus169-7839-5956-70273-95;301-5;313-28
Multi-variableMVT101-2970-73328-32;832-6
ImplicitFunctions184-86;204-27161-211133-46334-64
UnconstrainedOptimization231-54;307-68149-546-7;73-77375-86;396-410
EqualityConstraints369-43285-9577-103411-23:478-80
InequalityConstraints688-755131-35111-127424-78;480-2
Integration435-57226-469-19887-92
DifferentialEquations470-96313-3220633-665
3
Economics205FinalExaminationFall2010
CommentsonCourseGrade.TotalPoints:1200.High:1134;Low:558;Median:913;Mean
900.Formula:Maximumof(Final,.75Final+Quizzes,5/6Final+2BestQuizzes).Grading:
?LowestB,662.
?LowestB+,815.
?LowestA—,854
?LowestA,1023.
CommentsonFinaLHigh:1130/1200;Low492;Median895;Mean:882.
I.Somepeoplewerecasualaboutjustifyingtheirstepsandaboutthedomainofdefinition.
2.Fine(exceptafewpeopledidnotknowhowtoperformintegrationbyparts).
3.OK.
4.Somepeopledidextrawork(youneededtodiagonalizeonlyonematrix).
5.Minordeductionsfornotjustifyingyourmethod.
6.Part(b)hadatypo(correctedbelow).Youneedstrictmonotonicity(notcontinuity)for
uniqueness.Mostrespondedtothepoorlyposedquestionbywritingnonsense.Weallo-
catedallofthepointsintheproblemtotheotherparts,sonoonelostpointsforresponses
to(b).Onpart(c)severalpeopleforgotthatCEwasimplicitlydefinedbytheequation
(theytreatedIhsasCinsteadof〃(C)).Thisisasignificanterrorandledtoasignificant
deduction.
7.HereitwasokifyousolvedtheproblemusingtheobjectivefunctionSa;1^3^13—wx2—wy2
(theanswersbelowarefor—wx2—wy2.
8.Onthefirstpartsomepeopleactedasispositivesemi-definiterequiresazeroeigenvalue.
Nottrue.Positivedefinitematricesandpositivesemi-definite(inthesamewaythatpositive
numbersarenon-negative).
1.Ineachpart,determineatwhichpointsthederivativeofthefunctionhexists.Whenitdoes
exist,computeit.Whenitdoesnotexist,explainwhyitdoesnotexist.
(a)h{x)=log(l+log(l+N)).
Forcontinuityyouneedtheargumentsofthelogstobepositive.Thismeansthatyou
needx>—1inorderfor1+log(l+%)>0andlog(l+T)>—1inorderfor
1+log(l+x)>0.Thismeansyouneed1+x>e~1orx>6T—1.
h!(x)=-———
(1+x)(l+log(l+n))
bythechainrule(sincethederivativeoflog(l+a)=1/(1+7)).
1
(b)h(x)=?兩)2.
Thisoneisdifferentiablewhenrr>0(compositionofdifferentiablefunctions).Since
theformulaisjustacomplicatedwayofwritingh,⑺=x2,h![x]=2x.
(c)h(x)=J;于⑹dyforacontinuousfunction/.
Y(N)=/(/),alwaysdifferentiable(bythefundamentaltheoremofcalculus).
(d)h(x)=J:f⑺dgforacontinuousfunctionf.
Here//(①)=/⑺+//(①)providedthatfisdifferentiableatx.When力#0,
differentiabilityoffatrrisanecessaryconditionforhtobedifferentiableatx.When
z=0,"(0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《工程倫理學(xué)》練習(xí)題集
- 榮華-水岸新城住宅小區(qū)二、三、四期項(xiàng)目報(bào)告書(shū)
- 隨機(jī)梯度下降在大數(shù)據(jù)處理中的應(yīng)用
- 福州2024年06版小學(xué)四年級(jí)下冊(cè)英語(yǔ)第二單元測(cè)驗(yàn)試卷
- 人教版七年級(jí)英語(yǔ)下冊(cè)期末復(fù)習(xí)易錯(cuò)點(diǎn)知識(shí)歸納
- 2024年繞線絞線設(shè)備項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年AOI光學(xué)檢測(cè)系統(tǒng)項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 強(qiáng)化社會(huì)監(jiān)管-服務(wù)轉(zhuǎn)型跨越-推動(dòng)文化事業(yè)大發(fā)展大繁榮
- 2024年電表箱項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2023年商用半導(dǎo)體投資申請(qǐng)報(bào)告
- DB34∕T 2290-2022 水利工程質(zhì)量檢測(cè)規(guī)程
- GB/T 44399-2024移動(dòng)式金屬氫化物可逆儲(chǔ)放氫系統(tǒng)
- 2024年中國(guó)彩屏GPS手持機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 物流行業(yè)綠色物流發(fā)展實(shí)施方案
- 2024年廣東省清遠(yuǎn)市佛岡縣事業(yè)單位公開(kāi)招聘工作人員歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 2024-2030年中國(guó)?;沸袠I(yè)發(fā)展趨勢(shì)與投資前景展望報(bào)告
- 中國(guó)企業(yè)投資緬甸光伏發(fā)電市場(chǎng)機(jī)會(huì)分析及戰(zhàn)略規(guī)劃報(bào)告2024-2030年
- 2024年廣東省深圳市中考?xì)v史試題
- 2024至2030年全球及中國(guó)強(qiáng)光手電筒行業(yè)發(fā)展現(xiàn)狀調(diào)研及投資前景分析報(bào)告
- 化工(危險(xiǎn)化學(xué)品)企業(yè)主要負(fù)責(zé)人、安管員安全生產(chǎn)管理專(zhuān)項(xiàng)培訓(xùn)考核試卷(附參考答案)
- 2024年人教版小學(xué)三年級(jí)語(yǔ)文(上冊(cè))期中考卷及答案
評(píng)論
0/150
提交評(píng)論