版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2014IEEE17thInternationalConferenceonInligentTransportationSystems(ITSC)October8-11,2014.Qingdao,
UsingExitTimePredictionstoOptimizeSelfAutomatedParkingLots
RafaelNunes,LuisMoreira-MatiasandMichelFerreira
Privatecarcommutingisheavilydependentonthesubsidisationthatexistsintheformofavailableparking.However,thepublicfundingofsuchparkinghasbeenchanginerthelastyears,withasubstantialincreaseofmeter-chargedparkingareasinmanycities.Tohelptoincreasethesustainabilityofcartransportation,anovelconceptofaself-automatedparkinglothasbeenrecentlyproposed,whichleveragesonacollaborativemobilityofparkedcarstoachievethegoalofparkiniceasmanycarsinthesamearea,ascomparedtoaconventionalparkinglot.Thisconcept,knownasself-automatedparkinglots,canbeimprovedifareasonablepredictionoftheexittimeofeachcarthatenterstheparkinglotisusedtotrytooptimizeitsinitialcement,inordertoreducethemobilitynecessarytoextractblockedcars.Inthispaperweshowthattheexittimepredictioncanbedonewitharelativelysmallerror,andthatthispredictioncanbeusedtoreducethecollaborativemobilityinaself-automatedparkinglot.
Introduction
Parkingisamajorproblemofcartransportation,withimportantimplicationsintrafficcongestionandurbanland-scape.Ithasbeenshownthatparkingrepresents75%ofthevariablecostsofautocommuting[1],supportedbyamajorpublicsubsidisationofthespacedevotedtocarparking,wheretheuserdoesnotpayinmorethan95%oftheoccasions[2].
Thesustainabilityofcartransportationisnowadaysfacingseveralchallenges.Thenumberofcarsinmanycitieshasreachedalevelwheretheroadinfrastructureisunabletoavoidsystematictrafficcongestions.Inaddition,thehighcostoffossilfuelsandpollutantemissionlevelsarecreatingsignificantchallengesforthesustainabilityofprivatecarcommutinginmajorcities.Tollsandprohibitionofcircu-lationinoneortwoweekdaysforagivenvehiclearealreadyinceinsomeofourcities.Technologyistryingtomitigatethesechallengesfacedbycartransportation.Zero-emissionselectricpropulsionandconnectednavigationaretwoexamplesofthatcanhelpmakingcartransportationmoresustainable.
Technologyhasbeenfocusinghoweverinmovingcars,disregardingtheparkedperiodofthesecars,whichrepresents
ManuscriptsubmittedJune22,2014.
ManuscriptreviewedAugust19,2014.
RafaelNunesiswiththeFaculdadedeEngenharia,U.Porto,4200-465Porto-Portugal(:rafael.nunes[at]dcc.fc.up.pt).
LuisMoreira-MatiasiswiththeInstitutode unicac?o?es,4200-465Porto,PortugalandwithFaculdadedeEngenharia,U.Porto,4200-465Porto
-Portugal(phone:00351-91- ;:luis.matias[at]fe.up.pt).MichelFerreiraiswiththeInstitutode unicac?o?es,U.Porto,4169-
007Porto-Portugal(:michel[at]dcc.fc.up.pt).
ThisworkwassupportedbytheprojectI-CITY-”ICTforFutureMobility”,aspartofGrantNORTE-07-0124-FEDER-000064.
95%ofthevehicleexistence.Recently,asimpleproposalthatleveragesontechnologysuchaselectricpropulsionorwirelessvehicularconnectivityhasaddressedtheissueofcarparking,arguingthatthroughacollaborativeapproachtotheparkingofcars,theareapercarcouldbereducedtonearlyhalf,whencomparedtotheareapercarinaconventionalparkinglot.Thisapproach,knownasself-automatedparkinglots[3],worksasfollows.Anelectricvehicle(EV)isleftattheentranceofaparkinglotbyitsdriver.ThisEVisequippedwithvehicularcommunicationsthatestablishaprotocolwithaParkingLotController(PLC).TheEVisalsobasedonDrive-by-Wire(DbW)technology,wherein-vehicleElectronicControlUnits(ECUs)managesignalssentbytheaccelerationandbrakingpedal,andsteeringwheel.TheVehicle-to-Infrastructure(V2I)communicationprotocolallowsthePLCtocontrolthemobilityoftheEVintheparkinglot.ThePLCremoydrivestheEVtoitsparkingspace,usingin-vehiclepositioningsensors(e.g.rotationperwheel),magnet-basedpositioning,orsomeothertypeofpositioningsystem(e.g.camera-based).Alternativelytoafully-automatedsystem,ascenarioofhuman-basede-operateddrivingcouldalsobeused[4].Inthisconceptofself-automatedparkinglotsthecarsareparkedinaverycompactway,withoutspacedevotedtoaccesswaysoreveninter-vehiclespacethatallowsopeningdoors.Asanewvehicleenterstheparkinglot,thePLCsendswirelessmessagestomovethevehiclesintheparkinglottocreatespaceto modatetheenteringvehicle.Ifablockedcarwantstoleavetheparkinglot,thePLCalsosendsmessagestomovetheothervehicles,inordertocreateanexitpath.In
[3]itwasshownthatthisconceptcouldreducetheareapervehicletonearlyhalf,aswellasreducetheoverallmobilityofcarsintheparkinglot,whencomparedtoaconventionalparkinglot.However,intheoriginalpaper,afirst-fitstrategywasusedtoinitiallyparkeachvehicle.Clearly,theinitialcementcanbeimprovedifsomeknowledgeabouttheexpectedexittimeofeachcarisused.Thebasicideaisthatacarshouldnotbeblockedbyanothercarthatwillleavetheparkinglotlater.Ifthecarsintheparkinglotarecedusinganorderthatreflectstheirexpectedexittimes,thentheoverallmobilityintheparkinglottocreateexitpathscanbereduced.
Inthispaperweuseanentireyearofentriesandexitsinaparkinglot,whereeachvehicleusesauniqueidentifier,tobeabletoderiveitpectedexittime,usingthisinformationtoimprovetheoriginalcementofthecarinordertoreducemanoeuvringmobility.Ourgoalisnottoobtainapreciseexittimeforeachvehicle,butratheratime-intervalthatcanbe
978-1-4799-6077-4/14/$31.00?2014IEEE 302
PAGE
303
usedinconjunctionwiththeparkinglotlayout(e.g.numberoflanes)toreducetheprobabilityofhavingtomoveparkedvehiclestocreatedexitpathsforblockedvehicles.
Theremainderofthispaperisorganisedasfollows:inthenextsectionwepresentsomeconsiderationsregardingparkinglotdesign,andfurtherdescribeouroptimisationgoalbasedonatypicallayoutforaself-automatedparkinglot.Wethenpresentourmethodologytopredictanexittimeintervalforeachvehicle,andhowthisintervalisusedtoselecttheoriginallanetoparkeachvehicle.Wethenpresentourdatasetsetusedascasestudyandpresentexperimentalresultsinthenextsection,includingadiscussionoftheseresults.Finally,weendwithsomeconclusions.
ParkingLotDesign
Thegeometricdesignoftheparkinglotisanimportantissueinaself-automatedparkinglot.Inconventionalparkinglotsthereareanumberofconsiderationsthathavetobetakenintoaccountwhendesigningthem.Forinstance,widthofparkingspacesandaccessways,one-wayortwo-wayuseoftheaccessways,entryangleintheparkingbays(90?,60?,45?),pedestrianpaths,visibilitytofindanavailableparkingspace,etc.Inaself-automatedparkinglot,manyoftheseconsiderationsdonotapply.ManoeuvringisdoneautonomouslybythecarfollowingtheinstructionsofthePLC,pedestrianaccessisnotallowed,andtheassignedparkingspaceisdeterminedbythePLC.Themaindesignissueisdefiningageometriclayoutthat isesparkingspace,leveragingonminimalbufferareastomakethenecessarymanoeuvresthatallowtheexitfromanyparkingspaceunderalloccupancyconfigurations.Thisgeometricdesignisultimaydeterminedbytheshapeofthespaceoftheparkinglot.Theparkinglotarchitecturealsodefinesthetrajectoriesandassociatedmanoeuvrestoenndexiteachparkingspace.
TheparkinglothasaV2IcommunicationdevicewhichallowsthecommunicationbetweenthevehiclesandthePLC.Intheory,thisinfrastructureequipmentcouldberecedbyavehicleintheparkinglot,whichcouldassumethefunctionofPLCwhileparkedthere,handinerthisfunctiontoanothercaruponexit,similarlytotheenvisionedfunctioningofaV2VVirtualTrafficLightprotocol[5].Note,however,thattheexistenceoftheactualinfrastructure,whichcouldbecomplementedwitha -cameraofferinganaerialoftheparkinglottoimprovethecontrollerperceptionofthelocationandorientationofvehicles,couldsimplifytheprotocolandimprovereliability.
Reducingandsimplifyingsuchtrajectoriesandmanoeu-vresisalsoanimportantdesignissue,astheyaffectthereliabilityofthesystemandallowfasterstorageandretrievalofcars.Notealsothattheparkinglotarchitecturecantakeadvantageofthefactthatthepassengerdoesnotentertheparkinglot,andthustheinter-vehicledistancesdonotneedtoallowforspacetoopendoors.Tooptimiseandsimplifymanoeuvres,theseself-automatedparkinglotswillrequirespecificminimumturningradiusvaluesforvehicles.
Fig.1.Anexamplelayoutforaself-automatedparkinglot.Theparkinglotcanneverbecompleyfull,asbufferareasarenecessarytobeabletoallowtheexitofeachvehicleunderallpossibleconfigurations.Inthisexample,aminimumof6emptyspararenecessary.
Onlyvehiclesthatmeettheturningradiusspecifiedbyeachparkinglotwillbeallowedtoenterit.
Thegeometriclayoutoftheparkinglotanditsbufferareascanassumeverydifferentconfigurationsfortheself-automatedfunctioning.Onepossibilityistohaveparallellaneswithminimalspacebetweenthem,asillustratedinFig.1.Inthistypeoflayout,thePLCstartsbyassigningalanetoavehicle.Thisinitialdecisioniscritical,asitshouldminimisetheneedtomoveavehiclefromonelanetoanother.NotethatiftheredvehicleinFig.1needstoleaveunderthecurrentconfiguration,thenthevehiclebehinditneedstobemovedtoanotherlane.Ifwecouldpredictthattheexitoftheredvehiclewouldhappenbeforetheexitofthevehiclebehindit,thenthislastvehiclewouldbebettercedinadifferentlane.Ourgoalinthispaperiactlytobeabletopredictanexit-intervalforeachvehicle,anddesignalaneselectionmethodologythatreducesthemobilityneededtocreateexitpaths.
Notethatparkinglotswillnotbeabletobecompleyfull,asbufferspaceneedstoexisttoallowtheexitofeachvehicleunderallpossibleconfigurations.Theminimumnumberofemptyspaces,configuringbufferareas,dependsontheparkinglotlayout.InthelayoutpresentedinFig.1,withalanedepthof7,weneedabufferareawithaminimumof6emptyspaces.
Methodology
Ourmethodologyconsistsonthefollowingfoursteps:itstartsby(A)dividingtheoriginaldatasetinksmallerones,containinguserswithsimilarparkinghabits;then,(B)datadrivenregressionisperformedoverthenewlycreatedsub-datasets.Thirdly,aparkingtimeintervalisgenerated(C)basedonsuchpredictionsandontheirpreviousresiduals(differencebetweenapredictedvalue(y?)anditsrealone,y).Finallytheselectedlane(D)willbetheonewhiinimizesthelikelihoodofperformingunnecessaryvehiclemovements
1.ThismethodologyissummarizedinFig.2andexinedindetailthroughoutthissection.
ProfileGeneration
i=1
LetX={X1,X2,...,Xn}bentimestampeddatarecordsontheparkinglotentriesdescribingtheentry/exitbehavioursofρdistinctusers.LetUi?Xdenotetherecordsofandindividualuseri(i.e.Uρ≡X)andΨidescribethesample-basedprobabilitydensityfunction(p.d.f.)ofitsparkingtimehabits.AclusteringprocessisfirstlymadeonXbasedon
i=1
S
theextractedΨi.TheresultingkclusterscanbedefinedasΠ={π1,π2,...,πk}.Theywillcomprisesub-datasetscontainingdatarecordsonusershavingsimilarprofiles(i.e.parkingtime-habits).Consequently,X≡kπi.
ParkingTimePrediction
Toperformtheparkingtimeprediction,weproposetousedatadrivenregression.Inregression,thegoalistodetermineafunctionf(Z,θ),giventheinputindependentvariables,Z,andtherealvaluesofthedependentvariables,
lerepresentsthepointthatisgreaterthan25%ofthedata,whilethethirdlethepointthatisgreaterthan75%.Lete1,iande3,idenotethefirstandthirdlesoftheregressionresidualsproducedbyagivenmodelMπionthepreviouslytesteddatarecordsinπi.OurbaselineintervalIisgivenbythefollowingequation:
Ij,πi=[pj,πi?e1,πi,pj,πi+e3,πi] (2)
Letahitoccureverytimetherealparkingtimeiscontainedwithintheintervalestimated.Otherwise,weconsidertheoccurrenceofamiss.Ourgoalistoproduceintervalsinorderto izethenumberofhitsand,atthesametime,tominimizeitswidth.Todoso,weproposetoextendthebaselinedescribedineq.(2)byemployingaself-adaptivestrategy.Suchstrategyconsistsonmultiplyingthele-
basedintervalwidthbya0≤β≤2(startingonβ=1).Thisvalueisincrementallyupdatedwheneveranuserofπileaves
theparkinglot(i.e.eachtimeanewlyrealparkingtimeisknownonπi).Letαπidenotethenumberofconsecutivemisses/hitsofourintervalpredictionmethodinπi.Whenever
θ.Theoutputofthemodelisnotnecessarilyequaltothe
realvalue,duetonoiseinthedataand/orlimitednumber
απi
>αth,thevalueofβisincremented/decrementedbyτ.
ofentries.Consequently,aregressionmodelcommonlycomprisesanerrore.Thefunctionfcanbeexpressedasfollows:
Y≈f(Z,θ)+e (1)
LetM={Mπ1,Mπ2,...,Mπk}bethesetofkregressionmodelsandpj,πidenotetheparkingtimepredictionforagiventimestampeduserentrancewiththeprofileπi.Mresultsofapplyinganinductionmethodofinteresttothe
datasetsinΠ.Byngso,theauthorpecttoapproximatetherealvehiclesparkingtimegivenasetofdescribingvariables(i.e.:Z).
IncrementalIntervalGeneration
Givenapredictionfortheparkingtimeofanusertimes-tampedentrance(i.e.pj,πi),itispossibletoestimateanintervalforthisvaluebasedontheresidualsproducedbyitsregressionmodel.Hereby,weproposetodosobyemployingtheresiduals’les.Aleisapointtakenfromacumulativedistributionfunctionofavariable.Thefirst
1Wheneveragivenvehiclecexits,allitslane’svehiclesstandingbetweencandtheparkinglotexit,havetobemovedtoabufferzone.Suchmovementscouldbeavoidedbyanexit-orientedsortingofeachlane’svehicles.
αthandτaretwouser-definedparameterssettinghowreac-tivetheintervalpredictionmodelshouldbe.Consequently,itispossibletore-writetheeq.(2)intothefollowingone:
Ij,πi=[pj,πi??,pj,πi+?],?=(e3,πi?e1,πi)×β(3)
Everytimethatasequencemiss/hitorhit/missoccurs,therespectiveαvalueissetto0.Theβendsupbycontrollingtheintervalwidth:thedescribedalgorithmaimstoadaptitselftothecurrentscenariobynarrowingtheintervalswidthwheneveritisgettingmultiplehitsorbystretchingitselfontheoppositescenario.
ParkingLaneSelection
Inthispaper,theparkinglotisassumedtofollowarectangularlayoutwheretheentranceandtheexitarethesame.Itispossibletorepresentitasal×rmatrix,where
l,rsetsthenumberoflanesandthe umnumberof
vehiclesineachlane,respectively.Whenavehicleenterstheparkinglot,itisnecessarytoselectalaneκtoparkitin.Suchselectionshouldminimizethenumberofunnecessaryvehiclemovements(i.e.?κ).Consequently,eachlanehasanassociatedscoreWκ.Itcanbefacedasalikelihoodofthatselectionunnecessarymovementsgiventhei)currentintervalpredictionforthenewlyarriveduser(Ij,πi)andii)thevehiclesalreadyparkedinκ.Thelanewithlowestscoreispredictedtobetheonethatminimizes?κ.
EmptylaneshaveapredefinedscoreofW=1whilea
Users’p.d.f.
Clustering
Regression
Models
Numerical
Predictions
Estimation
Interval
fullonehaveW=∞.Lethbethelastvehicleinκ(i.e.
??1
??1
??1
????1
??2
??2
??2
????2
??
Lane
Selection
??
Regression
Training
Regression
Testing
Interval
EstimationModel
??
????
????
??????
??
j,πi
thevehiclemostrecentlyparked),IU betheupperlimit
andI
L
h,πb
bethelowerlimitoftheestimatedinterval(note
thatthevehicle’sjprofile,πi,maybe(ornot)thesame
h,πb
ofthevehicleh,πb).IfIU
L
<I
j,πi
,iti pectedthat
,
thevehiclejofprofileπiexitstheparkinglotfirstthanh
j,πi
(e.g.:Fig.3-c).Inthiscase,Wκ=∞.IfIU
L
<I
h,πb
Fig.2.Anillustrationonthedifferentstepsoftheproposedmethodology.
theniti pectedthatjandhcanleavetheparkinglotprovokingnounnecessarymovements(i.e.:?κ=0;e.g.:
EntriesExits
Fig.3.Ina),theupperlimitofIhislowerthanthelowerlimitofIj,sohipectedtoleavetheparkinglotfirstthanj.Inb)thereisanoverlapbetweenthetwointervals.Itswidthisusedtocomputethelane’sscore.Finally,c)istheoppositescenarioofa).
Fig.3-a).Consequently,thescoreisthenWκ=0onthiscase.Otherwise,Wκcanbecomputedasfollows
07h08h09h10h11h12h13h14h15h16h17h18h19h20h21h22h
0 500100015002000250030003500
Fig.4. BarplotchartrepresentinghistogramsfortheEntry/Exittimesbetween7amand10pm.
possibletoobservethatthemainentrytimesarebetween8amand10amandthemainexittimesbetween5pmand
IU?IL
(N?1)4
8pm.Thevehicle’itsfromtheparkinglotfollowsa
κ
W=j,πi h,πb+ κ
(4)
I
—I
r
U
h,πi
L
h,πb
bimodaldistribution,withthemodesatlunchtime(between
j,πi
i
whereNκstandsforthenumberofvehiclescurrentlyinκ.Thisapproachisinspiredonthetypicalp-valuestatisticaltestconsideringanullhypothesisbysettingtheextremedatapointasIUandIh,πasaroughapproximationontheparkingtimedistributionfunctionfortheparkedvehicleh.Thesecondtermofeq.(4)isanexponentialweightwhichaimstoexpressthepossiblecostofhavingunnecessaryvehiclemovementscausedbyassigningthenewlyarrivedvehiclejtothelaneκ.
CaseStudy
ThiscasestudyconsistsontheparkinglotoftheFacultyofScienceofUniversityofPorto,Portugal.Thedataof309usersduringtheyearof2013wasusedtovalidateourmethodology.Thisparkinglothasthecapacitytoholdupto100vehicles.Since96.4%ofthedataentriesareinweekdays,onlytheworkdaysareconsideredinthisstudy.
Eachdatarecordhasthefollowingfeatures:(i)anuserID,(ii,iii)twotimestampsfortheparkingentry/exit,(iv)typeofday(e.g.:Monday),(v)holiday/not-holidaybooleanand,finally,the(vi)department,(vii)and(viii)jobrole(e.g.FullProfessor).
Ideallyalldataentrieswouldhavetheirentryandexittimesproperlylabelled.However,itdoesnothappeninthiscasebecausetheparkingentrieitsarenotfullymonitored.Consequently,thereareentrieswithoutexitsandvice-versa.Totacklesuchissue,apreprocessingtasktopairtheentrieswiththeexitswasperformed.Alltheresultingdatarecordswithparkingtimesmallerthan10minutesorhigherthan16hourswereremoved.Forthesamereasons,wehavealsofilteredtheparkinglotusersbyusingthedatarecordsofthetop-75%,regardingtheirnumberofparkingentries.
Intheresultingdataset,theaverageparkingtimeis5hoursand25minutesandwithastandarddeviationof3hoursand8minutes.Fig.IVexhibitstwohistogramsrepresentingthehourlyfrequenciesontheentryandexittimes.Itis
12amand2pm)andatlateafternoon(between5pmand7pm).
ExperimentalResults
Inthissection,westartbydescribingtheexperimentalsetupusedinourexperimentsandtheevaluationmetricsusedtovalidateourmethodology.Then,wepresentsomeexperimentalresultsandabriefdiscussionontheirinsights.
ExperimentalSetup
Theinitialdatasetwasdividedinatrainingset(JanuarytoOctober)andatestset(November).AllexperimentswereconductedusingRSoftware[6].Thealgorithmsusedwerethek-NearestNeighbours(kNN)[7],theRandom s(RF)[8],theProjectionPursuitRegression(PPR)[9]andtheSupportVectorMachines(SVM)[10]fromtheRpackages[kknn],[randoms],[stats]and[e1071].
Regardingthefeatureselection,awell-knownstate-of-the-arttechniquewasused:PrincipalComponenty-sis(PCA)[11].Thetestedfeaturesweretypeofday,holiday/not-holidaybooleanvariableandtheuser’sde-partment,andjobrole.ForclusteringweusedtheExpectation- izationalgorithmwiththeRpackage[MClust].ThisalgorithmwaschosenduetobeingabletodeterminetheoptimalnumberofclustersautomaticallybasedonBayesianInformationCriterion[12].
Thelast2weeksofthetrainingsetwasusedformodelselection.Inthisstage,thefollowingparametersweretestedforeachalgorithm:forkNN,distance=[1..5],kMax=[2..15]andthekernels:rectangular,triangular,epanechnikov,gaussian,rankandoptimal,forRFmtry={3,4,5}andntrees={500,750,1000},forPPRnterms={2,3,4}
andmax.terms={5,6,7,8}andforSVMthekernels:
linear,radial,polynomialandsigmoid.Thebestpair(algo-rithm,parametersetting)wasselectedtoperformthenumer-icalpredictioninthetestset.
Finally,thereactivenessparametersontheintervalesti-mationmodel(τ,αth)weresetforthevalues0.1and3,respectively.
Toevaluateourmethodperformance,weconsideredabaselinenaivestrategy.Itconsistsondirectingthenewlyarrivedvehicletotheleftmostlaneκwithanemptyspace.Aseriesofsimulationswereconductedtocomparetheparkinglotbehaviorusingtheaforementionedlaneselectionstrategies(i.e.naiveandsmart).Multipleparkinglayoutswereconsideredonthisseriesofsimulations.Itaimedtodemonstratethatthestrategiesbehaviorisindependentontheparkinglayout.Theaveragedumnumberofparkedcarsonadailybasisontheconsidereddatasetis50.Consequently,everyparkedlayoutswithacapacitybetween50and80vehicles(i.e.:the1stle)containing,atleast,8lanes,wereconsideredonourexperiences.
Evaluation
Theroot-mean-squared-error(RMSE)andthemeanab-soluteerror(MAE)werethemetricsusedtoevaluatethepredictions.Theycanbedefinedasfollows:
TABLEI
Resultsfromthenumericprediction.
Group
#ofIndividuals
RMSE
MAE
Hit%
Interval
1
11
5124
3320
63
8942
2
9
4804
3255
66
3862
3
3
7047
5235
68
9584
4
6
4644
4047
78
9764
5
3482
6
1
376
340
72
3504
7
5
3968
3317
68
9196
8
7
7618
6101
58
11738
9
11
9106
7628
53
11900
10
6
8244
7403
55
12560
11
4
2609
2058
72
5255
12
10
7871
5436
67
9583
72
9558
54
11228
50
6258
16
10
6682
5356
70
10293
3158
W.Average
6601
5076
65
11188
TABLEII
Simulationresultswiththenumberofunnecessaryvehiclemovementsforbothstrategies.
RMSE=
t=1 ,MAE=t=1
sPg
(y?t?yt)2 Pg |y?t?yt|
Config.
Naive
Smart
Config.
Naive
Smart
10x05
1665
1379
05x10
7799
7540
11x05
1482
1205
05x11
7817
7615
12x05
1255
1074
05x12
7817
7633
13x05
1074
914
05x13
7817
7633
14x05
937
813
05x14
7817
7633
15x05
811
771
05x15
7817
7633
09x06
2234
2032
06x09
5596
5423
10x06
1819
1583
06x10
5596
5444
11x06
1510
1282
06x11
5596
5453
12x06
1255
1139
06x12
5596
5453
13x06
1074
930
06x13
5596
5453
08x07
2808
2520
07x08
3818
3545
09x07
2248
2116
07x09
3818
3545
10x07
1819
1616
07x10
3818
3551
11x07
1510
1303
07x11
3818
3551
07x08
3818
3545
08x07
2808
2520
09x08
2248
2116
08x09
2808
2535
10x08
1819
1617
08x10
2808
2535
08x08
2808
2535
g g
(5)
wherey?isthepredictedvalue,ytherealoneandgisthenumberofsamples.
Theparkingtimeestimationintervalisevaluatedintwoforms,apercentageofhitsandaratiobetweenthehitsand
itswidth.Ifforasamplesthereisahit,thenhits
otherwisehits=0.Theratiocanbedefinedas:
=1,
X
ratio= gs=1
hits
1
×
δI×g
(6)
whereδIisthewidthoftheestimationintervalandgisthenumberofconsideredsamples.
Theevaluationcriteriaemployedinthesimulationwasthetotalnumberofunnecessaryvehiclemovementsdbyagivenstrategy(i.e.,UM).Letusconsideraexitingvehiclec,parkedinalaneκwithgvehicles,inpositioni.TheunnecessarynumberofmovementsUMcausedforctoexittheparkinglotcanbecomputedas:
simulationineverytestedconfigurations,withthenumberofunnecessaryvehiclemovements,μforbothstrategies.The
X
UM= g?ij (7)
j=1
Letusconsideralanewithg=5vehicleswherethevehicleonthepositioni=2isrequestedtoexitasanexemplificationforthecalculusofMU.Inthiscase,MU=3+2+1=6.
Results
Theobtainedresultsarethreefold:(1)thePCAresultshave mendedtoremovetheuser’sandtheholidayfeaturefromtheoriginalset.(2)TableIexhibitstheresultsofthenumericalpredictionusingtheremainingfeaturesetforeachprofileπi,bypointingthenumberofuserscontainedineachgroupandthe(RMSE,MAE)obtainedineachoneofthem.(3)TableIIshowstheresultsfromtheparking
intervalsgeneratedhad65%hitsandaageintervalwidthof≈11000seconds.Thesmartstrategy esthenaiveoneinalltheconsideredconfigurations.
Discussion
TableIexhibitsalargevariationonRMSE/MAEproducedbythemodelsofthedifferentgroups.Thegroupssizeisalsodifferentfromgrouptogroup.Thesegroupscanbefacedasprofileswhichdescribethetypicalparkingbehavioroftheuserswithin.Itispossibletoobservethatsomegroupscontainonlyoneuser(i.e.5,6,17)whichindicatesthattheyhaveacompleydifferentprofilethantheremainingones.Sofar,suchprofilesareonlybasedoneachuser’sparkingtime(namely,byusingtheEuclideanDistanceovertheirp.d.f.).However,someuserscanexperiencelarge
variationsontheirparkingtimedependingonsomesubsetsoffeaturevalues(i.e.toentertheparkinglotatmorningoratafternoon).ThisfactcanpartiallyexintheabovementionedRMSE/MAEvariability.
Theaveragedhitspercentage(65%)anditslargewidthuncoverthestochasticityoftheparkingtimevariablegiventhecurrentfeatureset.Infact,itisreasonabletoadmitthatwemayneedotherfeaturestoimproveourpredictionmodelsuchasweatherorevent-basedones(e.g.asunnydayoraspecialsoccermatayreduce/increasetheparkingtime).However,wecannotsustaintheseinsightsonthepresentresults.
Thenaivestrategyisclearlybenefitedbyconfigurationswithmorelanes,wheretheUMcanbenaturallyminimizedbyunderusingthetotallane’scapacitybyfillingfirsttheemptyones.Infact,thisstrategyisalreadyfocuse
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年式車輛租賃合同
- 《心率變異性與晚期非小細胞肺癌患者總生存期之間的關(guān)聯(lián)研究》
- 《文化整合論下茶葉地理標志品牌形象設(shè)計研究》
- 《我國上市公司股權(quán)激勵研究》
- 《礦物硫?qū)Φ半u生長性能和生化指標的影響》
- 2024年公共區(qū)域保安服務(wù)合同
- 《老年人身體活動能力、恐懼心理與跌倒的交互作用分析》
- 2024年戲曲服裝道具租賃合同
- 2024固體廢物處理隧道涵洞勞務(wù)分包合同
- 2024醫(yī)療廣告宣傳服務(wù)合同
- 2024年村級防止返貧集中排查總結(jié)會議記錄
- 2024年復(fù)蘇中心建設(shè)與管理急診專家共識
- 2023年12月英語四級真題及答案-第2套
- 2024天貓男裝行業(yè)秋冬趨勢白皮書
- 《正確對待外來文化》名師課件
- 2024年綿陽科技城新區(qū)事業(yè)單位考核公開招聘高層次人才10人(高頻重點復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 中醫(yī)食療藥膳學(xué)智慧樹知到答案2024年四川護理職業(yè)學(xué)院
- 建筑項目安全風(fēng)險分級管控清單建筑風(fēng)險分級管控清單(范例)
- 工程圖學(xué)(天津大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年天津大學(xué)
- 農(nóng)村戶改廁施工協(xié)議書
- 當(dāng)代社會政策分析 課件 第十一章 殘疾人社會政策
評論
0/150
提交評論