




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Word第第頁初中數(shù)學幾何知識點總結(jié)學校數(shù)學幾何學問點總結(jié)1
三角形的學問點
1、三角形:由不在同始終線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的樣子是固定的,三角形的這獨特質(zhì)叫三角形的穩(wěn)定性。
9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和
推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;
(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
四邊形(含多邊形)學問點、概念總結(jié)
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線相互平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線相互平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線相互垂直,并且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線相互垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,并且相互垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全掩蓋,叫做用多邊形掩蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對角線的條數(shù):
(1)從n邊形的一個頂點動身可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形
(2)n邊形共有n(n-3)/2條對角線
圓學問點、概念總結(jié)
1、不在同始終線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等于定長的點的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6、圓的外部可以看作是圓心的距離大于半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,假如兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離dr
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角
19、假如兩個圓相切,那么切點肯定在連心線上
20、①兩圓外離dR+r
②兩圓外切d=R+r
③兩圓相交R-rr)
④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
(2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27、正三角形面積√3a/4a表示邊長
28、假如在一個頂點四周有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
32、定理:一條弧所對的圓周角等于它所對的圓心角的一半
33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35、弧長公式l=a*ra是圓心角的弧度數(shù)r0扇形面積公式s=1/2*l*r
學校數(shù)學幾何學問點總結(jié)2
直角三角形的學問點
基本簡介:
等腰直角三角形的邊角之間的關(guān)系:
(1)三角形三內(nèi)角和等于180°;
(2)三角形的一個外角等于和它不相鄰的兩個內(nèi)角之和;
(3)三角形的一外角大于任何一個和它不相鄰的內(nèi)角;
(4)三角形兩邊之和大于第三邊,兩邊之差小于第三邊;
(5)在同一個三角形內(nèi),大邊對大角,大角對大邊。
等腰直角三角形中的四條特別的線段:角平分線,中線,高,中位線。
(1)三角形的角平分線的交點叫做三角形的內(nèi)心,它是三角形內(nèi)切圓的圓心,它到各邊的距離相等。
(三角形的外接圓圓心,即外心,是三角形三邊的垂直平分線的交點,它到三個頂點的距離相等)。
(2)三角形的.三條中線的交點叫三角形的重心,它到每個頂點的距離等于它到對邊中點的距離的2倍。
(3)三角形的三條高的交點叫做三角形的垂心。
(4)三角形的中位線平行于第三邊且等于第三邊的二分之一。
(5)三角形的一條內(nèi)角平分線與兩條外角平分線交于一點,該點即為三角形的旁心。
留意:
①任意三角形的內(nèi)心、重心都在三角形的內(nèi)部。
②鈍角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的邊上。(直角三角形的垂心為直角頂點,外心為斜邊中點。)
④銳角三角形垂心、外心在三角形內(nèi)部。
⑤任意三角形的旁心肯定在三角形的外部。
直角三角形的`相關(guān)線段:
1、中線:頂點與對邊中點的連線,平分三角形。
2、角平分線:平分三角形一內(nèi)角的線段。
3、高線:三角形中一頂點向?qū)呑鞯拇咕€。
等腰梯形的學問點
定義
一組對邊平行(不相等),另一組對邊不平行但相等的四邊形叫做等腰梯形。顧名思義,等腰梯形是兩腰相等的梯形,它是梯形的一種特別狀況。
判定
1、以下判定可作為定理使用:
(1)一組對邊相等且不平行,另一組對邊平行的四邊形是等腰梯形。
(2)同一底上的兩個角相等的梯形是等腰梯形。
(3)對角線相等的`梯形是等腰梯形。
(4)兩腰相等的梯形是等腰梯形。
以下判定不作為定理使用:
(1)對角線相等且能形成兩個等腰三角形的四邊形是等腰梯形。
(2)對角互補的梯形是等腰梯形。
面積公式
對于等腰梯形,其面積計算方法與一般梯形全都。用a、b、h分別表示梯形的上底、下底、高,S表示梯形的面積,則S=(a+b)×h÷2。
通俗的說,梯形的面積=(上底+下底)×高÷2。
特別狀況
1、若等腰梯形對角線相互垂直,則面積為1/2乘以兩對角線長度的乘積。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度澳大利亞大學本碩連讀合同
- 二零二五年度勞動合同解除協(xié)議
- 二零二五年度農(nóng)村合作社鄉(xiāng)村旅游開發(fā)合作協(xié)議
- 鏟車勞務(wù)承包合同鏟車合同書
- 社交網(wǎng)絡(luò)運營合作合同
- 公司內(nèi)外部往來文書規(guī)范手冊
- 小熊維尼的友情世界讀后感
- 生物技術(shù)在農(nóng)村綜合利用項目協(xié)議
- 新能源汽車充電站投資協(xié)議
- 企業(yè)數(shù)字化轉(zhuǎn)型解決方案手冊
- 大學數(shù)學《概率論與數(shù)理統(tǒng)計》說課稿
- 深大基坑設(shè)計施工關(guān)鍵技術(shù)孫加齊
- 《神經(jīng)外科常見疾病》課件
- DL-T5707-2014電力工程電纜防火封堵施工工藝導則
- 職業(yè)素養(yǎng)提升第2版(大學生職業(yè)素養(yǎng)指導課程)全套教學課件
- 西師版小學數(shù)學六年級下冊單元測試卷(含答案)
- 2024年公安機關(guān)理論考試題庫500道【綜合卷】
- 2024年四川成都市公共交通集團有限公司招聘筆試參考題庫含答案解析
- 第2章導游(課件)《導游業(yè)務(wù)》(第五版)
- 2023年北京重點校初二(下)期中數(shù)學試卷匯編:一次函數(shù)
- 加推樓盤營銷方案
評論
0/150
提交評論