版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
TheTimeValueofMoneyWhatisTimeValue?WesaythatmoneyhasatimevaluebecausethatmoneycanbeinvestedwiththeexpectationofearningapositiverateofreturnInotherwords,“adollarreceivedtodayisworthmorethanadollartobereceivedtomorrow”Thatisbecausetoday’sdollarcanbeinvestedsothatwehavemorethanonedollartomorrowTheTerminologyofTimeValuePresentValue-Anamountofmoneytoday,orthecurrentvalueofafuturecashflowFutureValue-AnamountofmoneyatsomefuturetimeperiodPeriod-Alengthoftime(oftenayear,butcanbeamonth,week,day,hour,etc.)InterestRate-Thecompensationpaidtoalender(orsaver)fortheuseoffundsexpressedasapercentageforaperiod(normallyexpressedasanannualrate)AbbreviationsPV-PresentvalueFV-FuturevaluePmt-PerperiodpaymentamountN-Eitherthetotalnumberofcashflowsor thenumberofaspecificperiodi-TheinterestrateperperiodTimelines012345PVFVTodayAtimelineisagraphicaldeviceusedtoclarifythetimingofthecashflowsforaninvestmentEachtickrepresentsonetimeperiodCalculatingtheFutureValueSupposethatyouhaveanextra$100todaythatyouwishtoinvestforoneyear.Ifyoucanearn10%peryearonyourinvestment,howmuchwillyouhaveinoneyear?012345-100?CalculatingtheFutureValue(cont.)Supposethatattheendofyear1youdecidetoextendtheinvestmentforasecondyear.Howmuchwillyouhaveaccumulatedattheendofyear2?012345-110?GeneralizingtheFutureValueRecognizingthepatternthatisdeveloping,wecangeneralizethefuturevaluecalculationsasfollows:Ifyouextendedtheinvestmentforathirdyear,youwouldhave:CompoundInterestNotefromtheexamplethatthefuturevalueisincreasingatanincreasingrateInotherwords,theamountofinterestearnedeachyearisincreasingYear1:$10Year2:$11Year3:$12.10ThereasonfortheincreaseisthateachyearyouareearninginterestontheinterestthatwasearnedinpreviousyearsinadditiontotheinterestontheoriginalprincipleamountCompoundInterestGraphicallyTheMagicofCompoundingOnNov.25,1626PeterMinuit,aDutchman,reportedlypurchasedManhattanfromtheIndiansfor$24worthofbeadsandothertrinkets(珠子和其他飾品).WasthisagooddealfortheIndians?Thishappenedabout371yearsago,soiftheycouldearn5%peryeartheywouldnow(in1997)have:Iftheycouldhaveearned10%peryear,theywouldnowhave:That’sabout54,563Trillion(萬億)dollars!TheMagicofCompounding(cont.)TheWallStreetJournal(17Jan.92)saysthatallofNewYorkcityrealestateisworthabout$324billion.Ofthisamount,Manhattanisabout30%,whichis$97.2billionAt10%,thisis$54,562trillion!OurU.S.GNPisonlyaround$6trillionperyear.Sothisamountrepresentsabout9,094yearsworthofthetotaleconomicoutputoftheUSA!.CalculatingthePresentValueSofar,wehaveseenhowtocalculatethefuturevalueofaninvestmentButwecanturnthisaroundtofindtheamountthatneedstobeinvestedtoachievesomedesiredfuturevalue:PresentValue:AnExampleSupposethatyourfive-yearolddaughterhasjustannouncedherdesiretoattendcollege.Aftersomeresearch,youdeterminethatyouwillneedabout$100,000onher18thbirthdaytopayforfouryearsofcollege.Ifyoucanearn8%peryearonyourinvestments,howmuchdoyouneedtoinvesttodaytoachieveyourgoal?AnnuitiesAnannuityisaseriesofnominallyequalpaymentsequallyspacedintime(等時(shí)間間隔)Annuitiesareverycommon:RentMortgagepaymentsCarpaymentPensionincomeThetimelineshowsanexampleofa5-year,$100annuity012345100100100100100ThePrincipleofValueAdditivityHowdowefindthevalue(PVorFV)ofanannuity?First,youmustunderstandtheprincipleofvalueadditivity:ThevalueofanystreamofcashflowsisequaltothesumofthevaluesofthecomponentsInotherwords,ifwecanmovethecashflowstothesametimeperiodwecansimplyaddthemalltogethertogetthetotalvalue價(jià)值相加PresentValueofanAnnuityWecanusetheprincipleofvalueadditivitytofindthepresentvalueofanannuity,bysimplysummingthepresentvaluesofeachofthecomponents:PresentValueofanAnnuity(cont.)Usingtheexample,andassumingadiscountrateof10%peryear,wefindthatthepresentvalueis:01234510010010010010062.0968.3075.1382.6490.91379.08PresentValueofanAnnuity(cont.)Actually,thereisnoneedtotakethepresentvalueofeachcashflowseparatelyWecanuseaclosed-formofthePVAequationinstead:PresentValueofanAnnuity(cont.)Wecanusethisequationtofindthepresentvalueofourexampleannuityasfollows:Thisequationworksforallregularannuities,regardlessofthenumberofpaymentsTheFutureValueofanAnnuityWecanalsousetheprincipleofvalueadditivitytofindthefuturevalueofanannuity,bysimplysummingthefuturevaluesofeachofthecomponents:TheFutureValueofanAnnuity(cont.)Usingtheexample,andassumingadiscountrateof10%peryear,wefindthatthefuturevalueis:100100100100100012345146.41133.10121.00110.00}=610.51atyear5TheFutureValueofanAnnuity(cont.)JustaswedidforthePVAequation,wecouldinsteaduseaclosed-formoftheFVAequation:Thisequationworksforallregularannuities,regardlessofthenumberofpaymentsTheFutureValueofanAnnuity(cont.)Wecanusethisequationtofindthefuturevalueoftheexampleannuity:AnnuitiesDue
預(yù)付年金Thusfar,theannuitiesthatwehavelookedatbegintheirpaymentsattheendofperiod1;thesearereferredtoasregularannuitiesAannuitydueisthesameasaregularannuity,exceptthatitscashflowsoccuratthebeginningoftheperiodratherthanattheend0123451001001001001001001001001001005-periodAnnuityDue5-periodRegularAnnuityPresentValueofanAnnuityDueWecanfindthepresentvalueofanannuitydueinthesamewayaswedidforaregularannuity,withoneexceptionNotefromthetimelinethat,ifweignorethefirstcashflow,theannuityduelooksjustlikeafour-periodregularannuityTherefore,wecanvalueanannuityduewith:PresentValueofanAnnuityDue(cont.)Therefore,thepresentvalueofourexampleannuitydueis:NotethatthisishigherthanthePVofthe,otherwiseequivalent,regularannuityFutureValueofanAnnuityDueTocalculatetheFVofanannuitydue,wecantreatitasregularannuity,andthentakeitonemoreperiodforward:012345PmtPmtPmtPmtPmtFutureValueofanAnnuityDue(cont.)Thefuturevalueofourexampleannuityis:Notethatthisishigherthanthefuturevalueofthe,otherwiseequivalent,regularannuityDeferredAnnuities
遞延年金Adeferredannuityisthesameasanyotherannuity,exceptthatitspaymentsdonotbeginuntilsomelaterperiodThetimelineshowsafive-perioddeferredannuity01234510010010010010067PVofaDeferredAnnuityWecanfindthepresentvalueofadeferredannuityinthesamewayasanyotherannuity,withanextrasteprequiredBeforewecandothishowever,thereisanimportantruletounderstand: WhenusingthePVAequation,theresultingPVisalwaysoneperiodbeforethefirstpaymentoccursPVofaDeferredAnnuity(cont.)TofindthePVofadeferredannuity,wefirstfindusethePVAequation,andthendiscountthatresultbacktoperiod0Hereweareusinga10%discountrate0123450010010010010010067PV2=379.08PV0=313.29PVofaDeferredAnnuity(cont.)Step1:Step2:FVofaDeferredAnnuityThefuturevalueofadeferredannuityiscalculatedinexactlythesamewayasanyotherannuityTherearenoextrastepsatallUnevenCashFlowsVeryoftenaninvestmentoffersastreamofcashflowswhicharenoteitheralumpsumoranannuityWecanfindthepresentorfuturevalueofsuchastreambyusingtheprincipleofvalueadditivityUnevenCashFlows:AnExample(1)Assumethataninvestmentoffersthefollowingcashflows.Ifyourrequiredreturnis7%,whatisthemaximumpricethatyouwouldpayforthisinvestment?012345100200300UnevenCashFlows:AnExample(2)Supposethatyouweretodepositthefollowingamountsinanaccountpaying5%peryear.Whatwouldthebalanceoftheaccountbeattheendofthethirdyear?012345300500700Non-annualCompoundingSofarwehaveassumedthatthetimeperiodisequaltoayearHowever,thereisnoreasonthatatimeperiodcan’tbeanyotherlengthoftimeWecouldassumethatinterestisearnedsemi-annually,quarterly,monthly,daily,oranyotherlengthoftimeTheonlychangethatmustbemadeistomakesurethattherateofinterestisadjustedtotheperiodlengthNon-annualCompounding(cont.)Supposethatyouhave$1,000availableforinvestment.Afterinvestigatingthelocalbanks,youhavecompiledthefollowingtableforcomparison.Inwhichbankshouldyoudeposityourfunds?Non-annualCompounding(cont.)Tosolvethisproblem,youneedtodeterminewhichbankwillpayyouthemostinterestInotherwords,atwhichbankwillyouhavethehighestfuturevalue?Tofindout,let’schangeourbasicFVequationslightly:Inthisversionoftheequation‘m’isthenumberofcompoundingperiodsperyearNon-annualCompounding(cont.)WecanfindtheFVforeachbankas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度林權(quán)流轉(zhuǎn)與林業(yè)資源保護(hù)合作合同4篇
- 上海市閔行區(qū)24校2025屆中考生物押題卷含解析
- 二零二五版LED顯示屏內(nèi)容管理系統(tǒng)集成合同3篇
- 二零二五版房地產(chǎn)股權(quán)托管與風(fēng)險(xiǎn)控制合同3篇
- 2024陶幻離婚后共同子女課外活動(dòng)費(fèi)用分擔(dān)協(xié)議3篇
- 2025年度瓶裝純凈水生產(chǎn)加工合作協(xié)議4篇
- 2025年度5G通信技術(shù)研究人員聘用協(xié)議書4篇
- 2025年綠植市場綠植銷售與售后服務(wù)合同3篇
- 二零二四年內(nèi)墻抹灰班組高效施工勞務(wù)分包協(xié)議6篇
- 2025年度新能源儲能技術(shù)合作開發(fā)與應(yīng)用合同4篇
- 2025年河北供水有限責(zé)任公司招聘筆試參考題庫含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 說課稿-2024-2025學(xué)年高中英語人教版(2019)必修第一冊
- 農(nóng)發(fā)行案防知識培訓(xùn)課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- NB/T 11536-2024煤礦帶壓開采底板井下注漿加固改造技術(shù)規(guī)范
- 2024年九年級上德育工作總結(jié)
- 2024年儲罐呼吸閥項(xiàng)目可行性研究報(bào)告
- 除氧器出水溶解氧不合格的原因有哪些
- 沖擊式機(jī)組水輪機(jī)安裝概述與流程
- 新加坡SM2數(shù)學(xué)試題
- 畢業(yè)論文-水利水電工程質(zhì)量管理
評論
0/150
提交評論