




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PaperlTS2015ProbabilisticModelsforSensorSimulationsfinal.pdf 智能交通世界大會(huì)ITS智慧城市社區(qū)人工智能AI物聯(lián)網(wǎng)IT報(bào)告課件教案22ndITSWorldCongress,Bordeaux,France,59October2019PapernumberITS-2627Probabilistic SensorSimulationsforValidatingDataFusionSystemsRobinSchubert1*,NormanMattern1,RobinvanderMade21.BASELABSGmbH,Ebertstr.10,09126Chemnitz,Germany,robin.schubert@baselabs.de2.TASSInternational,TheNetherlands AbstractWiththeincreasingdeploymentofadvaneeddriverassistaneesystemsandtheongoingdevelopmentofvehicleautomation,efficientwaysofvalidating suchsystemsarebecomingacrucialpartofthedevel-opmentprocess.Inparticular,simulationsareanincreasingly important addition tofieldtrialsastheyfacilitateanearlyandautomatedevaluation.Inthispaper,aprobabilisticmethodologyforsimulatingsensordatainthecontextofadvaneeddriverassistaneesystemsandautomatedvehiclesispresented.Theobjectiveofthisapproachistoincreasethesimulationslevelofrealismwhilemaintainingbothflexibilityandadaptabilityof simulation-basedvalidation strategies.Theproposedprobabilistic sensormodelsarecomparedtorealradardatainordertoevaluatethestatisticalcharacteristicsofbothdatasets.Withthepresentedapproach,itwillbepossibletoincreasethequalityoftheinitialevaluationresultsbasedonsimulateddata.Keywords: Sensorsimulation, MonteCarlo,ProbabilisticfilteringIntroductionInordertofurtherincreaseroadsafety andtrafficefficiency,advaneeddriver assistaneesystemsarecurrently beingwidelydeployed.Inaddition,different stakeholdersarecurrently investigating howanincreasinglevelofvehicleautomationcancontributetotheseobjectives[1].Asthesesystemsaredi-rectly intervening intothedriving process,theirdesignandimplementationishighlysafety-critical.Appropriateevaluationmethodologiesareacrucialpartofanydevelopmentprocessforsuchsystems.Duetothehighcomplexityoftrafficscenarios,fieldtrialsrequireatremendouseffort including driving millions ofkilometres.Thus,evaluationmethodologiesbasedonsimulationareincreasinglyappliedProbabilisticSensorSimulationsforValidatingDataFusionSystems2inparticular,fortheearlyphasesofevaluation.Themainbenefitsofsimulationsinclude thepossibilitytoautomatetests,toconductevaluationseveniftheplatform(e.g.sensors)arenotyetavailableandtoassesssafety-criticalsituations.Ontheotherhand,thesignificaneeofsimulation-basedevaluationsstronglydependsonthequalityofthesimulations,thatis,ontheprobabilitythatrealandsimulatedtrafficseenarioswouldtriggerasimilarbehaviourofthesystemundertest.Currently,twomainapproachesofsimulatingsensordataarebeingused:Groundtruthsensormodels:Thesemodelsdeliverthetrue,undisturbedsimulatedvaluesofthesimulatedquantities(e.g.,thepositionandvelocityofvehiclesorthecurvatureofaIane).Thenotionbehindthiskindofmodelsisthatasystemwhichfailsonidealizeddatawillcertainlynotfulfilitsrequirementsinrealisticscenarios.Physics-basedsensormodels:Thesemodelsattempttocovertheinternalbehaviourofthesensorandthephysicalmeasurementprinciple.Asanexample,manysimulationenvironmentsproviderenderedcameraimagesthataccount,amongothers,forlightingandweatherconditions. Similarly,physicalradarsensorsexistthatcalculatethepropagationofelectromagneticwavesinthetrafficsceneandthedetectioncharacteristics(e.g.,theantennapatterns) orthesensor.Whileeachoftheseapproachesisjustifiedforcertainusecases,bothlevelsofmodelling haveparticulardrawbacks.Thedisadvantageofgroundtruthmodelsisratherobvious,astheycompletelyneglect sen-sordisturbanceswhichdeterioratesthesignificanee oftheevaluationresultsobtainedwithsuchmodels.Thoughphysicalmodelsappeartoovercomethislimitationbymaximizingtherealismofthesimulateddata,theirdrawbacksareratheraveryhighcomputationalcomplexityandevenmore importantaratherlimitedpossibilitytoadaptthesimulationtodifferent sensortypes.Infact,exchanging,e.g.,aDopplerradarbyafrequencymodulatedcontinuouswave(FMCW)radarimpliestodevelopacom-pletelynewphysicalsensormodel.Table1ComparisonofdifferentabstractionlayersofsensormodelsforsimulationCriteriaGroundTruthModelsPhysicalModelsProbabilisticModelsErrorCharacteristicsidealizedrealisticrealisticstatisticsComputationalComplexitylowveryhighLowAdaptabilitytospecific sensorsn/averyhighlowProbabilisticSensorSimulationsforValidatingDataFusionSystems3Figure1GeneralstructureoftheprobabilisticsensormodelapproachInthispaper,anintermediateabstractionlayerforsensorsimulations ispresentedwhichintegrates sen-sordisturbancesprobabilistically.Thus,theobjectiveistherepresenttheerrorstatisticsofrealsensordataratherthanthedatathemselves.Table1givesacomparisonofthisapproachandthetwoclassicalmodellinglayers.Thepaperdescribesthetechnicalapproachandpresentsfirstresultsthathavebeenobtainedbycomparingprobabilisticallysimulateddatatorealdatainatypicaltraffic scene. Technical approachandchallengesThe generalideaofthepresentedapproachthatisillustratedinfigure1appearsratherstraightforward:Theidealizedsensordatageneratedfromagroundtruthsensormodelaresuperimposedbyanerrorsignalusingarandomgenerator.Inpractice,thiscanbedoneusingaMonteCarloapproach(forinstanee, rejection sampling[2]).Thisapproachcanbeappliedtodifferenttypesofsensorerrors,includingSensornoiseforeachmeasuredguanLily,l?alsenegativedetectionSjl;alsepositivedetecLions,Timingenvors(deterministic/probabilistic sensorlatencies)Themajorchallengeistoselectanappropriateprobabilisticdensityfunction(PDF)tosamplefrom.ThisPDFneedstorepresenttherealcharacteristicsofthesensorwhilestillfacilitatingadaptability.Thisadaptabilityshallnotonlycoverdifferent
sensors,butalsodifferent environments,weatherconditions,etc.Thistrade-offisachievedbydefiningaparticulartypeofPDFforeacherrortype(e.g.aPoissondistributionfordetectionerrororaRayleigh distribution forradardetections).However,theparametersofthesePDFs(e.g.,theclutterdensityforaPoissondistribution)canstillbesetaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromSimulationProbabilisticSensorModelsSimulationSimulationProbabilisticSensorModelsSimulationEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforValidating DataFusionSystems4CaseStudyInordertocomparetheprobabilisticallysimulatedsensordatawithrealdata,thefollowingevaluationmethodologyhasbeenapplied:DatafromvarioussensorshavebeenrecordedusingthedatahandlingframeworkBASELABSConnect[3].Thedataincludescameraimagesanddetectionsofa77GHzFMCWradar,Fromtherecordeddata,asimulationsscenariohasbeenderivedusingthesimulationsoftwarePresScan[4].Vehiclesinfrontoftheegovehiclehavebeensimulatedusingagroundtruthpositionandvelocitysensor(cp.figures2).Figure2Comparisonofrealandsimulatedtraffic scenariousedfortheevaluation. Figure3:IdealizedandmodifiedradarmeasurementsProbabilisticSensorSimulationsforValidatingDatafusionSystems5Usingtheapproachpresentedinthispaper,sensornoisehasbeenaddedtotherange,rangerate,andazimuthmeasurementsoftheradargroundtruthdata.Inaddition, detectionerrorsincludingfalsenegativesandfalseposiLives(c1ntter)hriveheenridded. Th^已mncharacteristicsoftheprobabilisticsensormodelshavebeencomparedtothestatisticsoftherealsradardata(includingthedetectionperformaneeandthemeasurementaccuracy)asshowninfigure3.Thecomparisonshowsthatthesimulateddisturbeddatarepresentsthesta-tisticalcharacteristicsofthetruedatareasonablywellwhichdoesnotappearsurprising,astheparametersoftherandomgeneratorhavebeenderivedfromtheseverymeasurementsbefore.Thisexemplaryevaluationshowsthatitiscomparablyeasytogenerate simulateddisturbedsensordataifthestatisticalpropertiesofthesensorundertestarewellknown.ResultsIn additiontothequalitativeevaluationdescribedintheprevioussection,aquantitativevalidationhas beenconducted.Theobjectivewastoensurethatthestatisticalpropertiesthataresupposedtobemod-elledcanbeindeedfoundinthesimulatedsensordata.Inthefollowing,theresultsforthedetectionerrorsarepresented:Forfalsenegatives,theuseroftheprobabilisticsensormodelmaydefinethedetection probabilityofthesimulatedsensor.Fromallsimulateddetections,asubsetischosesprobabilisticallythatissimulatedasnotdetectedand,thus,isnotdeliveredtotheoutputofthesimulationmodel.Infigure4,thecumulatedratiobetweenthedetectedobjectsandtheexistingobjectsisillustrated.Forthisexperiment,aparameterof=0.7hasbeenused.Itcanbeobservedthatwhileatthebeginningofthesimulation,theresultingratioisratherdynamic,itisconvergingagainst70%duringthesimula-tion.Thevalidationofthefalsepositivedetectionsrequiresabitmoreofexplanation:Themainparameterofthesimulationforthiseffectisthenumberoffalsepositivedetectionswithinthefieldofview.Thisparameterisnotprobabilisticonthecontrary,itisadeterministicvalue(whichmeansthatifthevalueissetto2,exactly2falsepositivedetectionsaresimulatedateachtimestep.However,thepositionsofthefalsepositive detectionsarechosenprobabilistically.ConsidertheexampleofanACCshowninfigure5:Theegovehicleisadjustingitsspeedaccordingtothedistaneeandthevelocityofthetargetvehicleinfrontofhim.Afalsepositivedeteetionontheneighbourlaneandinfrontofthetargetvehiclewillnotchangethebehaviourofthesystem.However,afalsepositivedetectionbetweentheegoandthehostvehiclewillhaveaneffect.Thus,theareaoftheegolanebetweenbothvehiclescanbeconsideredanareaofinterest fortheACCwithrespecttofalsepositivedetections.ProbabilisticSensorSimulationsforValidatingDataFusionSystems6Thequestionishowmanyfalsepositivedetectionswilloccurwithinthisareaofinterest.DatafusionsystemstypicallyassumethatthenumberoffalsepositivedetectionsisfollowingaPoissondistribution, whosedensitycanbecalculatedbymultiplyingthenumberoffalsepositivedetectionswiththeratiobetweentheareaofinterestandtheareaofthefieldofview.Figure6showsboththetheoreticalPoissondistributionforthegivenscenarioaswellastheempiricalvalues.Itcanbeseenthatthesimulationfitswelltothetheoreticalassumptions.Thevalidation showsthatthesimulatedmeasurementsbehaveaccordingtotheassumptionstypicaldatafusionsystemshave(thatis,Gaussiannoise,adefineddetectionprobabilityandafalsepositivedensitythatfollowsaPoissondistribution).Thus,thesimulationcanbeconvenientlyusedtotestandvalidatedatafusionsystemsanddeterminetheirbehaviourunderthecondition thattheirassumptionshold.Fu-tureworkwillalsoincludethesimulationofeffectsthatviolatessuchassumptions. ProbabilisticSensorSimulations forValidating DataFusionSystems7Figure4:Simulatedfalsenegativedetections.Inthetopdiagram,thetimestepsfrom0to500are
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年黑龍江省拜泉縣人民醫(yī)院公開招聘護(hù)理工作人員試題帶答案詳解
- 小學(xué)生心理健康直面青春期
- 健康素養(yǎng)課件模板下載
- 半導(dǎo)體技術(shù)課件第八
- 健康管理師招生課件
- 白慕大行業(yè)深度研究分析報(bào)告(2024-2030版)
- 新建氮化鎵外延片項(xiàng)目可研報(bào)告-圖文
- 中國仲丁靈行業(yè)市場調(diào)研及未來發(fā)展趨勢預(yù)測報(bào)告
- 中國核磁共振成像行業(yè)市場調(diào)查研究及投資前景預(yù)測報(bào)告
- 健康相關(guān)行為理論課件
- 火災(zāi)撲救無人機(jī)應(yīng)急預(yù)案(3篇)
- 2025山西國晉物業(yè)服務(wù)限公司及下屬企業(yè)招聘(34人)易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025《安全生產(chǎn)法》培訓(xùn)課件
- JJF(皖) 201-2025 氟化物水質(zhì)自動(dòng)分析儀校準(zhǔn)規(guī)范
- 2025-2030年中國中硼硅玻璃行業(yè)市場深度調(diào)研及競爭格局與投資前景研究報(bào)告
- 企業(yè)電工面試題及答案
- 2025-2030年中國天然氣液化裝置市場前景趨勢調(diào)研及發(fā)展戰(zhàn)略研究報(bào)告
- 兵團(tuán)職工考試試題及答案
- 職業(yè)技術(shù)學(xué)院《寵物外科手術(shù)》課程標(biāo)準(zhǔn)
- 咖啡店招人合同協(xié)議
- 廢水拉運(yùn)服務(wù)合同協(xié)議
評(píng)論
0/150
提交評(píng)論