PaperITS2015ProbabilisticModelsforSensorSimulationsfinalpdf智能交通世界大會ITS智慧城社區(qū)人工智能A_第1頁
PaperITS2015ProbabilisticModelsforSensorSimulationsfinalpdf智能交通世界大會ITS智慧城社區(qū)人工智能A_第2頁
PaperITS2015ProbabilisticModelsforSensorSimulationsfinalpdf智能交通世界大會ITS智慧城社區(qū)人工智能A_第3頁
PaperITS2015ProbabilisticModelsforSensorSimulationsfinalpdf智能交通世界大會ITS智慧城社區(qū)人工智能A_第4頁
PaperITS2015ProbabilisticModelsforSensorSimulationsfinalpdf智能交通世界大會ITS智慧城社區(qū)人工智能A_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PaperlTS2015ProbabilisticModelsforSensorSimulationsfinal.pdf 智能交通世界大會ITS智慧城市社區(qū)人工智能AI物聯(lián)網(wǎng)IT報告課件教案22ndITSWorldCongress,Bordeaux,France,59October2019PapernumberITS-2627Probabilistic SensorSimulationsforValidatingDataFusionSystemsRobinSchubert1*,NormanMattern1,RobinvanderMade21.BASELABSGmbH,Ebertstr.10,09126Chemnitz,Germany,robin.schubert@baselabs.de2.TASSInternational,TheNetherlands AbstractWiththeincreasingdeploymentofadvaneeddriverassistaneesystemsandtheongoingdevelopmentofvehicleautomation,efficientwaysofvalidating suchsystemsarebecomingacrucialpartofthedevel-opmentprocess.Inparticular,simulationsareanincreasingly important addition tofieldtrialsastheyfacilitateanearlyandautomatedevaluation.Inthispaper,aprobabilisticmethodologyforsimulatingsensordatainthecontextofadvaneeddriverassistaneesystemsandautomatedvehiclesispresented.Theobjectiveofthisapproachistoincreasethesimulationslevelofrealismwhilemaintainingbothflexibilityandadaptabilityof simulation-basedvalidation strategies.Theproposedprobabilistic sensormodelsarecomparedtorealradardatainordertoevaluatethestatisticalcharacteristicsofbothdatasets.Withthepresentedapproach,itwillbepossibletoincreasethequalityoftheinitialevaluationresultsbasedonsimulateddata.Keywords: Sensorsimulation, MonteCarlo,ProbabilisticfilteringIntroductionInordertofurtherincreaseroadsafety andtrafficefficiency,advaneeddriver assistaneesystemsarecurrently beingwidelydeployed.Inaddition,different stakeholdersarecurrently investigating howanincreasinglevelofvehicleautomationcancontributetotheseobjectives[1].Asthesesystemsaredi-rectly intervening intothedriving process,theirdesignandimplementationishighlysafety-critical.Appropriateevaluationmethodologiesareacrucialpartofanydevelopmentprocessforsuchsystems.Duetothehighcomplexityoftrafficscenarios,fieldtrialsrequireatremendouseffort including driving millions ofkilometres.Thus,evaluationmethodologiesbasedonsimulationareincreasinglyappliedProbabilisticSensorSimulationsforValidatingDataFusionSystems2inparticular,fortheearlyphasesofevaluation.Themainbenefitsofsimulationsinclude thepossibilitytoautomatetests,toconductevaluationseveniftheplatform(e.g.sensors)arenotyetavailableandtoassesssafety-criticalsituations.Ontheotherhand,thesignificaneeofsimulation-basedevaluationsstronglydependsonthequalityofthesimulations,thatis,ontheprobabilitythatrealandsimulatedtrafficseenarioswouldtriggerasimilarbehaviourofthesystemundertest.Currently,twomainapproachesofsimulatingsensordataarebeingused:Groundtruthsensormodels:Thesemodelsdeliverthetrue,undisturbedsimulatedvaluesofthesimulatedquantities(e.g.,thepositionandvelocityofvehiclesorthecurvatureofaIane).Thenotionbehindthiskindofmodelsisthatasystemwhichfailsonidealizeddatawillcertainlynotfulfilitsrequirementsinrealisticscenarios.Physics-basedsensormodels:Thesemodelsattempttocovertheinternalbehaviourofthesensorandthephysicalmeasurementprinciple.Asanexample,manysimulationenvironmentsproviderenderedcameraimagesthataccount,amongothers,forlightingandweatherconditions. Similarly,physicalradarsensorsexistthatcalculatethepropagationofelectromagneticwavesinthetrafficsceneandthedetectioncharacteristics(e.g.,theantennapatterns) orthesensor.Whileeachoftheseapproachesisjustifiedforcertainusecases,bothlevelsofmodelling haveparticulardrawbacks.Thedisadvantageofgroundtruthmodelsisratherobvious,astheycompletelyneglect sen-sordisturbanceswhichdeterioratesthesignificanee oftheevaluationresultsobtainedwithsuchmodels.Thoughphysicalmodelsappeartoovercomethislimitationbymaximizingtherealismofthesimulateddata,theirdrawbacksareratheraveryhighcomputationalcomplexityandevenmore importantaratherlimitedpossibilitytoadaptthesimulationtodifferent sensortypes.Infact,exchanging,e.g.,aDopplerradarbyafrequencymodulatedcontinuouswave(FMCW)radarimpliestodevelopacom-pletelynewphysicalsensormodel.Table1ComparisonofdifferentabstractionlayersofsensormodelsforsimulationCriteriaGroundTruthModelsPhysicalModelsProbabilisticModelsErrorCharacteristicsidealizedrealisticrealisticstatisticsComputationalComplexitylowveryhighLowAdaptabilitytospecific sensorsn/averyhighlowProbabilisticSensorSimulationsforValidatingDataFusionSystems3Figure1GeneralstructureoftheprobabilisticsensormodelapproachInthispaper,anintermediateabstractionlayerforsensorsimulations ispresentedwhichintegrates sen-sordisturbancesprobabilistically.Thus,theobjectiveistherepresenttheerrorstatisticsofrealsensordataratherthanthedatathemselves.Table1givesacomparisonofthisapproachandthetwoclassicalmodellinglayers.Thepaperdescribesthetechnicalapproachandpresentsfirstresultsthathavebeenobtainedbycomparingprobabilisticallysimulateddatatorealdatainatypicaltraffic scene. Technical approachandchallengesThe generalideaofthepresentedapproachthatisillustratedinfigure1appearsratherstraightforward:Theidealizedsensordatageneratedfromagroundtruthsensormodelaresuperimposedbyanerrorsignalusingarandomgenerator.Inpractice,thiscanbedoneusingaMonteCarloapproach(forinstanee, rejection sampling[2]).Thisapproachcanbeappliedtodifferenttypesofsensorerrors,includingSensornoiseforeachmeasuredguanLily,l?alsenegativedetectionSjl;alsepositivedetecLions,Timingenvors(deterministic/probabilistic sensorlatencies)Themajorchallengeistoselectanappropriateprobabilisticdensityfunction(PDF)tosamplefrom.ThisPDFneedstorepresenttherealcharacteristicsofthesensorwhilestillfacilitatingadaptability.Thisadaptabilityshallnotonlycoverdifferent

sensors,butalsodifferent environments,weatherconditions,etc.Thistrade-offisachievedbydefiningaparticulartypeofPDFforeacherrortype(e.g.aPoissondistributionfordetectionerrororaRayleigh distribution forradardetections).However,theparametersofthesePDFs(e.g.,theclutterdensityforaPoissondistribution)canstillbesetaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromSimulationProbabilisticSensorModelsSimulationSimulationProbabilisticSensorModelsSimulationEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforValidating DataFusionSystems4CaseStudyInordertocomparetheprobabilisticallysimulatedsensordatawithrealdata,thefollowingevaluationmethodologyhasbeenapplied:DatafromvarioussensorshavebeenrecordedusingthedatahandlingframeworkBASELABSConnect[3].Thedataincludescameraimagesanddetectionsofa77GHzFMCWradar,Fromtherecordeddata,asimulationsscenariohasbeenderivedusingthesimulationsoftwarePresScan[4].Vehiclesinfrontoftheegovehiclehavebeensimulatedusingagroundtruthpositionandvelocitysensor(cp.figures2).Figure2Comparisonofrealandsimulatedtraffic scenariousedfortheevaluation. Figure3:IdealizedandmodifiedradarmeasurementsProbabilisticSensorSimulationsforValidatingDatafusionSystems5Usingtheapproachpresentedinthispaper,sensornoisehasbeenaddedtotherange,rangerate,andazimuthmeasurementsoftheradargroundtruthdata.Inaddition, detectionerrorsincludingfalsenegativesandfalseposiLives(c1ntter)hriveheenridded. Th^已mncharacteristicsoftheprobabilisticsensormodelshavebeencomparedtothestatisticsoftherealsradardata(includingthedetectionperformaneeandthemeasurementaccuracy)asshowninfigure3.Thecomparisonshowsthatthesimulateddisturbeddatarepresentsthesta-tisticalcharacteristicsofthetruedatareasonablywellwhichdoesnotappearsurprising,astheparametersoftherandomgeneratorhavebeenderivedfromtheseverymeasurementsbefore.Thisexemplaryevaluationshowsthatitiscomparablyeasytogenerate simulateddisturbedsensordataifthestatisticalpropertiesofthesensorundertestarewellknown.ResultsIn additiontothequalitativeevaluationdescribedintheprevioussection,aquantitativevalidationhas beenconducted.Theobjectivewastoensurethatthestatisticalpropertiesthataresupposedtobemod-elledcanbeindeedfoundinthesimulatedsensordata.Inthefollowing,theresultsforthedetectionerrorsarepresented:Forfalsenegatives,theuseroftheprobabilisticsensormodelmaydefinethedetection probabilityofthesimulatedsensor.Fromallsimulateddetections,asubsetischosesprobabilisticallythatissimulatedasnotdetectedand,thus,isnotdeliveredtotheoutputofthesimulationmodel.Infigure4,thecumulatedratiobetweenthedetectedobjectsandtheexistingobjectsisillustrated.Forthisexperiment,aparameterof=0.7hasbeenused.Itcanbeobservedthatwhileatthebeginningofthesimulation,theresultingratioisratherdynamic,itisconvergingagainst70%duringthesimula-tion.Thevalidationofthefalsepositivedetectionsrequiresabitmoreofexplanation:Themainparameterofthesimulationforthiseffectisthenumberoffalsepositivedetectionswithinthefieldofview.Thisparameterisnotprobabilisticonthecontrary,itisadeterministicvalue(whichmeansthatifthevalueissetto2,exactly2falsepositivedetectionsaresimulatedateachtimestep.However,thepositionsofthefalsepositive detectionsarechosenprobabilistically.ConsidertheexampleofanACCshowninfigure5:Theegovehicleisadjustingitsspeedaccordingtothedistaneeandthevelocityofthetargetvehicleinfrontofhim.Afalsepositivedeteetionontheneighbourlaneandinfrontofthetargetvehiclewillnotchangethebehaviourofthesystem.However,afalsepositivedetectionbetweentheegoandthehostvehiclewillhaveaneffect.Thus,theareaoftheegolanebetweenbothvehiclescanbeconsideredanareaofinterest fortheACCwithrespecttofalsepositivedetections.ProbabilisticSensorSimulationsforValidatingDataFusionSystems6Thequestionishowmanyfalsepositivedetectionswilloccurwithinthisareaofinterest.DatafusionsystemstypicallyassumethatthenumberoffalsepositivedetectionsisfollowingaPoissondistribution, whosedensitycanbecalculatedbymultiplyingthenumberoffalsepositivedetectionswiththeratiobetweentheareaofinterestandtheareaofthefieldofview.Figure6showsboththetheoreticalPoissondistributionforthegivenscenarioaswellastheempiricalvalues.Itcanbeseenthatthesimulationfitswelltothetheoreticalassumptions.Thevalidation showsthatthesimulatedmeasurementsbehaveaccordingtotheassumptionstypicaldatafusionsystemshave(thatis,Gaussiannoise,adefineddetectionprobabilityandafalsepositivedensitythatfollowsaPoissondistribution).Thus,thesimulationcanbeconvenientlyusedtotestandvalidatedatafusionsystemsanddeterminetheirbehaviourunderthecondition thattheirassumptionshold.Fu-tureworkwillalsoincludethesimulationofeffectsthatviolatessuchassumptions. ProbabilisticSensorSimulations forValidating DataFusionSystems7Figure4:Simulatedfalsenegativedetections.Inthetopdiagram,thetimestepsfrom0to500are

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論