




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
激趣誘思同學(xué)們,請(qǐng)你寫出:(1)棱長為x的正方體體積y;(2)面積為x的正方形的邊長y.冪函數(shù)在生活、建筑、軍事等多個(gè)領(lǐng)域都有著重要的應(yīng)用.那么冪函數(shù)如何定義?它的圖象和性質(zhì)是怎樣的呢?知識(shí)點(diǎn)撥一、冪函數(shù)的定義一般地,形如y=xα(α為常數(shù))的函數(shù),即底數(shù)是自變量、指數(shù)是常數(shù)的函數(shù)稱為冪函數(shù).要點(diǎn)筆記
1.冪值前面的系數(shù)是1,否則不是冪函數(shù),如函數(shù)y=5就不是冪函數(shù).2.冪函數(shù)的定義域是使xα有意義的所有x的集合,因α的不同,定義域也不同.微練習(xí)在函數(shù)①y=,②y=3x2,③y=x2+2x中,是冪函數(shù)的為
.(填序號(hào))
解析函數(shù)y==x-4為冪函數(shù);函數(shù)y=3x2中x2的系數(shù)不是1,所以它不是冪函數(shù);函數(shù)y=x2+2x不是y=xα(α∈R)的形式,所以它不是冪函數(shù).答案①
二、冪函數(shù)的圖象和性質(zhì)1.常見的五種冪函數(shù)的圖象可以發(fā)現(xiàn)任一冪函數(shù)在第一象限內(nèi)必有圖象,在第四象限內(nèi)無圖象.2.冪函數(shù)的性質(zhì)
冪函數(shù)y=xy=x2y=x3y=y=x-1定義域RRR[0,+∞)(-∞,0)∪(0,+∞)值域R[0,+∞)R[0,+∞)(-∞,0)∪(0,+∞)奇偶性奇函數(shù)偶函數(shù)奇函數(shù)既不是奇函數(shù),也不是偶函數(shù)奇函數(shù)單調(diào)性在R上是增函數(shù)在[0,+∞)上單調(diào)遞增,在(-∞,0]上單調(diào)遞減在R上是增函數(shù)在[0,+∞)上是增函數(shù)在(0,+∞)上單調(diào)遞減,在(-∞,0)上單調(diào)遞減公共點(diǎn)(0,0),(1,1)(1,1)名師點(diǎn)析
冪函數(shù)y=xα的上述性質(zhì)可歸納如下:(1)當(dāng)α>0時(shí),圖象都通過點(diǎn)(0,0),(1,1);在第一象限內(nèi),函數(shù)單調(diào)遞增.(2)當(dāng)α<0時(shí),圖象都通過點(diǎn)(1,1);在第一象限內(nèi),函數(shù)單調(diào)遞減,圖象向上與y軸無限接近,向右與x軸無限接近.微判斷判斷下列說法是否正確,正確的在后面的括號(hào)內(nèi)畫“√”,錯(cuò)誤的畫“×”.(1)冪函數(shù)的圖象可以出現(xiàn)在平面直角坐標(biāo)系中的任意一個(gè)象限.(
)(2)冪函數(shù)的圖象必過(0,0)和(1,1).(
)答案(1)×
(2)×微練習(xí)(1)函數(shù)y=的圖象是(
)(2)(2021重慶高一期末)已知點(diǎn)(3,)在冪函數(shù)f(x)的圖象上,則f(x)在其定義域內(nèi)是(
)A.增函數(shù)
B.減函數(shù)C.奇函數(shù)
D.偶函數(shù)答案(1)C
(2)A課堂篇探究學(xué)習(xí)探究一冪函數(shù)的概念例1函數(shù)f(x)=(m2-m-5)xm-1是冪函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)單調(diào)遞增,試確定m的值.分析由f(x)=(m2-m-5)xm-1是冪函數(shù),且當(dāng)x>0時(shí)單調(diào)遞增,可先利用冪函數(shù)的定義求出m的所有可能的值,再利用單調(diào)性確定m的值.解根據(jù)冪函數(shù)的定義,得m2-m-5=1,解得m=3,或m=-2.當(dāng)m=3時(shí),f(x)=x2在區(qū)間(0,+∞)上單調(diào)遞增;當(dāng)m=-2時(shí),f(x)=x-3在區(qū)間(0,+∞)上單調(diào)遞減,不符合要求.故m=3.要點(diǎn)筆記
判斷一個(gè)函數(shù)是否為冪函數(shù)的依據(jù)是該函數(shù)是否為y=xα(α為常數(shù))的形式,即:(1)系數(shù)為1;(2)指數(shù)為常數(shù);(3)后面不加任何項(xiàng).反之,若一個(gè)函數(shù)為冪函數(shù),則該函數(shù)必具有這種形式.
解由冪函數(shù)的定義得m2-3m+3=1,解得m=1,或m=2;當(dāng)m=1時(shí),m2-m-2=-2,函數(shù)為y=x-2,其圖象不過原點(diǎn),滿足條件;當(dāng)m=2時(shí),m2-m-2=0,函數(shù)為y=x0,其圖象不過原點(diǎn),滿足條件.綜上所述,m=1或m=2.探究二冪函數(shù)的圖象例2已知函數(shù)y=xa,y=xb,y=xc的圖象如圖所示,則a,b,c的大小關(guān)系為(
)A.c<b<a B.a<b<cC.b<c<a D.c<a<b分析利用冪函數(shù)在第一象限內(nèi)的圖象特征和性質(zhì),結(jié)合所給圖象分析并判斷a,b,c的大小關(guān)系.解析由冪函數(shù)的圖象特征,知c<0,a>1,0<b<1.故c<b<a.答案A反思感悟
對(duì)于函數(shù)y=xα(α為常數(shù))而言,其圖象有以下特點(diǎn):(1)恒過點(diǎn)(1,1).(2)當(dāng)x∈(0,1)時(shí),指數(shù)越大,冪函數(shù)圖象越靠近x軸(簡記為“指大圖低”);當(dāng)x∈(1,+∞)時(shí),指數(shù)越大,冪函數(shù)的圖象越遠(yuǎn)離x軸(簡記為“指大圖高”).(3)由冪函數(shù)的圖象確定冪指數(shù)α與0,1的大小關(guān)系,即根據(jù)冪函數(shù)在第一象(4)當(dāng)α>0時(shí),冪函數(shù)在區(qū)間(0,+∞)上都單調(diào)遞增;當(dāng)α<0時(shí),冪函數(shù)在區(qū)間(0,+∞)上都單調(diào)遞減.變式訓(xùn)練
2如圖所示,曲線C1與C2分別是函數(shù)y=xm和y=xn在第一象限內(nèi)的圖象,則下列結(jié)論正確的是(
)A.n<m<0 B.m<n<0C.n>m>0 D.m>n>0解析畫出直線y=x0的圖象,作出直線x=2,與三個(gè)函數(shù)圖象交于點(diǎn)(2,20),(2,2m),(2,2n).由三個(gè)點(diǎn)的位置關(guān)系可知,n<m<0.故選A.答案A探究三利用冪函數(shù)的單調(diào)性比較大小例3比較下列各組中兩個(gè)數(shù)的大小:分析(1)利用y=的單調(diào)性比較大小;(2)利用y=x-1的單調(diào)性比較大小.反思感悟
1.比較冪大小的三種常用方法
2.利用冪函數(shù)單調(diào)性比較大小時(shí)要注意的問題比較大小的兩個(gè)實(shí)數(shù)必須在同一個(gè)函數(shù)的同一個(gè)單調(diào)區(qū)間內(nèi),否則無法比較大小.探究四冪函數(shù)圖象的應(yīng)用例4已知點(diǎn)(,2)在冪函數(shù)f(x)的圖象上,點(diǎn)
在冪函數(shù)g(x)的圖象上,問當(dāng)x滿足什么條件時(shí),有:(1)f(x)>g(x),(2)f(x)=g(x),(3)f(x)<g(x)?分析先利用冪函數(shù)的定義求出f(x),g(x)的解析式,再利用圖象判斷.在同一直角坐標(biāo)系中作出f(x)=x2和g(x)=x-2的圖象,如圖所示:(1)當(dāng)x>1或x<-1時(shí),f(x)>g(x);(2)當(dāng)x=1或x=-1時(shí),f(x)=g(x);(3)當(dāng)-1<x<1且x≠0時(shí),f(x)<g(x).變式訓(xùn)練
3已知(0.71.3)m<(1.30.7)m,求實(shí)數(shù)m的取值范圍.解根據(jù)冪函數(shù)y=x1.3的圖象,知當(dāng)0<x<1時(shí),0<y<1,∴0<0.71.3<1.又根據(jù)冪函數(shù)y=x0.7的圖象,知當(dāng)x>1時(shí),y>1,∴1.30.7>1.于是有0.71.3<1.30.7.對(duì)于冪函數(shù)y=xm,由(0.71.3)m<(1.30.7)m知,當(dāng)x>0時(shí),隨著x的增大,函數(shù)值y也增大,所以m>0.故實(shí)數(shù)m的取值范圍為(0,+∞).素養(yǎng)形成數(shù)形結(jié)合法求解含冪的不等式
要點(diǎn)筆記
已知xm與xn的大小,求x的取值范圍時(shí),應(yīng)借助冪函數(shù)y=xm與y=xn的圖象,利用數(shù)形結(jié)合的方法來解決.(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).解設(shè)f(x)=xα,g(x)=xβ.
當(dāng)堂檢測(cè)答案BA.C2,C1,C3,C4 B.C4,C1,C3,C2C.C3,C2,C1,C4 D.C1,C4,C2,C3答案D3.冪函數(shù)f(x)=x3m-5(m∈N)在區(qū)間(0,+∞)上單調(diào)遞減,且對(duì)定義域中的任意x,有f(-x)=f(x),則m等于(
)A.0 B.1 C.2 D.3解析冪函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中介招工合同范本
- 借款服務(wù)合同范本
- 低價(jià)藥店轉(zhuǎn)讓合同范本
- 麗江租車合同范本
- 北京商鋪投資合同范本
- 公司木材采購合同范本
- 勞動(dòng)合同繼簽合同范本
- 包工防水合同范本
- 公寓精裝修服務(wù)合同范本
- 2024年新疆醫(yī)科大學(xué)引進(jìn)考試真題
- 2024年云南省公務(wù)員考試《行測(cè)》真題及答案解析
- 教科版初中物理八年級(jí)下冊(cè)知識(shí)梳理
- 《飛科電器公司盈利能力存在的問題及完善對(duì)策(7800字論文)》
- 零星維修工程項(xiàng)目施工方案1
- 楚辭離騷的原文全文完整注音版、拼音版標(biāo)準(zhǔn)翻譯譯文及注釋
- 湖北省荊州市2024年七年級(jí)上學(xué)期期中數(shù)學(xué)試題【附答案】
- 刑事訴訟法課件
- 肩袖損傷病例討論
- 《ISO 41001-2018 設(shè)施管理- 管理體系 要求及使用指南》專業(yè)讀與應(yīng)用指導(dǎo)材料之2:“4 組織環(huán)境-4.2 理解相關(guān)方的需要和期望”
- 2024年中國凍蝦仁市場調(diào)查研究報(bào)告
- DB13(J)-T 8543-2023 公共建筑節(jié)能設(shè)計(jì)標(biāo)準(zhǔn)(節(jié)能72%)
評(píng)論
0/150
提交評(píng)論