![2024屆云南省峨山縣大龍?zhí)吨袑W(xué)數(shù)學(xué)九上期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view/4710f076fecd2d3c58771d016712b98d/4710f076fecd2d3c58771d016712b98d1.gif)
![2024屆云南省峨山縣大龍?zhí)吨袑W(xué)數(shù)學(xué)九上期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view/4710f076fecd2d3c58771d016712b98d/4710f076fecd2d3c58771d016712b98d2.gif)
![2024屆云南省峨山縣大龍?zhí)吨袑W(xué)數(shù)學(xué)九上期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view/4710f076fecd2d3c58771d016712b98d/4710f076fecd2d3c58771d016712b98d3.gif)
![2024屆云南省峨山縣大龍?zhí)吨袑W(xué)數(shù)學(xué)九上期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view/4710f076fecd2d3c58771d016712b98d/4710f076fecd2d3c58771d016712b98d4.gif)
![2024屆云南省峨山縣大龍?zhí)吨袑W(xué)數(shù)學(xué)九上期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view/4710f076fecd2d3c58771d016712b98d/4710f076fecd2d3c58771d016712b98d5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省峨山縣大龍?zhí)吨袑W(xué)數(shù)學(xué)九上期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.關(guān)于x的一元二次方程有兩個實數(shù)根,則k的取值范圍在數(shù)軸上可以表示為()A. B.C. D.2.方程x2﹣2x﹣4=0的根的情況()A.只有一個實數(shù)根 B.有兩個不相等的實數(shù)根C.有兩個相等的實數(shù)根 D.沒有實數(shù)根3.如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2).以原點O為位似中心,在第一象限內(nèi)將線段AB縮小后得到線段CD,且D(4,1),則端點C的坐標為()A.(3,1) B.(4,1) C.(3,3) D.(3,4)4.已知,則代數(shù)式的值為()A. B. C. D.5.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.﹣3 B.﹣1 C.2 D.36.關(guān)于的二次方程的一個根是0,則a的值是()A.1 B.-1 C.1或-1 D.0.57.如圖,某超市自動扶梯的傾斜角為,扶梯長為米,則扶梯高的長為()A.米 B.米 C.米 D.米8.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設(shè)比賽組織者應(yīng)邀請個隊參賽,則滿足的關(guān)系式為()A. B. C. D.9.已知,,且的面積為,周長是的周長的,,則邊上的高等于()A. B. C. D.10.如圖,△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=22°,則∠BDC等于A.44° B.60° C.67° D.77°二、填空題(每小題3分,共24分)11.方程x2=1的解是_____.12.如圖,AC是⊙O的直徑,弦BD⊥AC于點E,連接BC過點O作OF⊥BC于點F,若BD=12cm,AE=4cm,則OF的長度是___cm.13.從地面豎直向上拋出一小球,小球離地面的高度h(米)與小球運動時間t(秒)之間關(guān)系是h=30t﹣5t2(0≤t≤6),則小球從拋出后運動4秒共運動的路徑長是________米.14.寫出經(jīng)過點(0,0),(﹣2,0)的一個二次函數(shù)的解析式_____(寫一個即可).15.一個不透明的布袋里裝有2個紅球,4個白球和a個黃球,這些球除顏色外其余都相同,若從該布袋里任意摸出1個球是黃球的概率為0.4,則a=_____.16.若最簡二次根式與是同類根式,則________.17.如圖,⊙O的直徑AB=20cm,CD是⊙O的弦,AB⊥CD,垂足為E,OE:EB=3:2,則CD的長是________cm.18.已知線段c是線段、的比例中項,且,,則線段c的長度為______.三、解答題(共66分)19.(10分)如圖,AB是⊙O的直徑,,E是OB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.(1)求證:直線BF是⊙O的切線;(2)若OB=2,求BD的長.20.(6分)某校舉行秋季運動會,甲、乙兩人報名參加100m比賽,預(yù)賽分A、B、C三組進行,運動員通過抽簽決定分組.(1)甲分到A組的概率為;(2)求甲、乙恰好分到同一組的概率.21.(6分)在平面直角坐標系中,將一塊等腰直角三角板(△ABC)按如圖所示放置,若AO=2,OC=1,∠ACB=90°.(1)直接寫出點B的坐標是;(2)如果拋物線l:y=ax2﹣ax﹣2經(jīng)過點B,試求拋物線l的解析式;(3)把△ABC繞著點C逆時針旋轉(zhuǎn)90°后,頂點A的對應(yīng)點A1是否在拋物線l上?為什么?(4)在x軸上方,拋物線l上是否存在一點P,使由點A,C,B,P構(gòu)成的四邊形為中心對稱圖形?若存在,求出點P的坐標;若不存在,請說明理由.22.(8分)如圖,已知等邊△ABC,AB=1.以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連結(jié)GD.(1)求證:DF是⊙O的切線;(2)求FG的長;(3)求△FDG的面積.23.(8分)在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+ax+a(a≠0)交x軸于點A和點B(點A在點B左邊),交y軸于點C,連接AC,tan∠CAO=1.(1)如圖1,求拋物線的解析式;(2)如圖2,D是第一象限的拋物線上一點,連接DB,將線段DB繞點D順時針旋轉(zhuǎn)90°,得到線段DE(點B與點E為對應(yīng)點),點E恰好落在y軸上,求點D的坐標;(1)如圖1,在(2)的條件下,過點D作x軸的垂線,垂足為H,點F在第二象限的拋物線上,連接DF交y軸于點G,連接GH,sin∠DGH=,以DF為邊作正方形DFMN,P為FM上一點,連接PN,將△MPN沿PN翻折得到△TPN(點M與點T為對應(yīng)點),連接DT并延長與NP的延長線交于點K,連接FK,若FK=,求cos∠KDN的值.24.(8分)將矩形紙片沿翻折,使點落在線段上,對應(yīng)的點為,若,求的長.25.(10分)如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點,拋物線y=ax2+bx+c交y軸于點C(0,﹣),交x軸正半軸于D點,拋物線的頂點為M.(1)求拋物線的解析式;(2)設(shè)點P為直線AB下方的拋物線上一動點,當(dāng)△PAB的面積最大時,求△PAB的面積及點P的坐標;(3)若點Q為x軸上一動點,點N在拋物線上且位于其對稱軸右側(cè),當(dāng)△QMN與△MAD相似時,求N點的坐標.26.(10分)已知:如圖,點P是一個反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點,PQ垂直于x軸,垂足Q的坐標為(2,0).(1)求這個反比例函數(shù)的解析式;(2)如果點M在這個反比例函數(shù)的圖象上,且△MPQ的面積為6,求點M的坐標.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】利用根的判別式和題意得到,求出不等式的解集,最后在數(shù)軸上表示出來,即可得出選項.【題目詳解】解:∵關(guān)于x的方程有兩個實數(shù)根,∴,解得:,在數(shù)軸上表示為:,故選:B.【題目點撥】本題考查了在數(shù)軸上表示不等式的解集,根的判別式的應(yīng)用,注意:一元二次方程(為常數(shù))的根的判別式為.當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.特別注意:當(dāng)時,方程有兩個實數(shù)根,本題主要應(yīng)用此知識點來解決.2、B【題目詳解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有兩個不相等的實數(shù)根.故選B.【題目點撥】一元二次方程根的情況:(1)b2-4ac>0,方程有兩個不相等的實數(shù)根;(2)b2-4ac=0,方程有兩個相等的實數(shù)根;(3)b2-4ac<0,方程沒有實數(shù)根.注:若方程有實數(shù)根,那么b2-4ac≥0.3、C【分析】利用位似圖形的性質(zhì),結(jié)合兩圖形的位似比,即可得出C點坐標.【題目詳解】解:∵線段AB的兩個端點坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小后得到線段CD,且D(4,1),∴在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴點C的橫坐標和縱坐標都變?yōu)锳點的一半,∴點C的坐標為:(3,3).故選:C.【題目點撥】此題主要考查了位似圖形的性質(zhì),利用兩圖形的位似比得出對應(yīng)點橫縱坐標關(guān)系是解題關(guān)鍵.在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或?k.4、B【解題分析】試題分析:根據(jù)題意令a=2k,b=3k,.故選B.考點:比例的性質(zhì).5、A【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系即可得出答案.【題目詳解】由根與系數(shù)的關(guān)系得故選:A.【題目點撥】本題主要考查一元二次方程根與系數(shù)的關(guān)系,掌握一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.6、B【分析】把代入可得,根據(jù)一元二次方程的定義可得,從而可求出的值.【題目詳解】把代入,得:,解得:,∵是關(guān)于x的一元二次方程,∴,即,∴的值是,故選:B.【題目點撥】本題考查了對一元二次方程的定義,一元二次方程的解,以及一元二次方程的解法等知識點的理解和運用,注意隱含條件.7、A【題目詳解】解:由題意,在Rt△ABC中,∠ABC=31°,由三角函數(shù)關(guān)系可知,
AC=AB?sinα=9sin31°(米).
故選A.【題目點撥】本題主要考查了三角函數(shù)關(guān)系在直角三角形中的應(yīng)用.8、A【分析】根據(jù)應(yīng)用題的題目條件建立方程即可.【題目詳解】解:由題可得:即:故答案是:A.【題目點撥】本題主要考察一元二次方程的應(yīng)用題,正確理解題意是解題的關(guān)鍵.9、B【分析】根據(jù)相似三角形的周長比等于相似比可得兩個三角形的相似比,根據(jù)相似三角形的面積比等于相似比的平方可求出△ABC的面積,進而可求出AB邊上的高.【題目詳解】∵,周長是的周長的,∴與的相似比為,∴,∵S△A′B′C′=,∴S△ABC=24,∵AB=8,∴AB邊上的高==6,故選:B.【題目點撥】本題考查相似三角形的性質(zhì),相似三角形的周長比等于相似比;相似三角形的面積比等于相似比的平方;熟練掌握相關(guān)性質(zhì)是解題關(guān)鍵.10、C【解題分析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折疊的性質(zhì)可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故選C.二、填空題(每小題3分,共24分)11、±1【解題分析】方程利用平方根定義開方求出解即可.【題目詳解】∵x2=1∴x=±1.【題目點撥】本題考查直接開平方法解一元二次方程,解題關(guān)鍵是熟練掌握一元二次方程的解法.12、.【分析】連接OB,根據(jù)垂徑定理和勾股定理即可求出OB,從而求出EC,再根據(jù)勾股定理即可求出BC,根據(jù)三線合一即可求出BF,最后再利用勾股定理即可求出OF.【題目詳解】連接OB,∵AC是⊙O的直徑,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm則EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案為.【題目點撥】此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.13、1【分析】根據(jù)題目中的函數(shù)解析式可以求得h的最大值,從而可以求得小球從拋出后運動4秒共運動的路徑長.【題目詳解】解:∵h=30t?5t2=?5(t?3)2+45(0≤t≤6),∴當(dāng)t=3時,h取得最大值,此時h=45,∴小球從拋出后運動4秒共運動的路徑長是:45+[45?(30×4?5×42)]=1(米),故答案為1.【題目點撥】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的路徑的長.14、y=x2+2x(答案不唯一).【解題分析】設(shè)此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【題目詳解】∵拋物線過點(0,0),(﹣2,0),∴可設(shè)此二次函數(shù)的解析式為y=ax(x+2),把a=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【題目點撥】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開放性題目,答案不唯一.15、1【解題分析】根據(jù)黃球個數(shù)÷總球的個數(shù)=黃球的概率,列出算式,求出a的值即可.【題目詳解】根據(jù)題意得:=0.1,解得:a=1,經(jīng)檢驗,a=1是原分式方程的解,則a=1;故答案為1.【題目點撥】此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、1【分析】根據(jù)同類二次根式的定義可得a+2=5a-2,即可求出a值.【題目詳解】∵最簡二次根式與是同類根式,∴a+2=5a-2,解得:a=1.故答案為:1【題目點撥】本題考查了同類二次根式:把各二次根式化為最簡二次根式后若被開方數(shù)相同,那么這樣的二次根式叫同類二次根式;熟記定義是解題關(guān)鍵.17、1【分析】根據(jù)垂徑定理與勾股定理即可求出答案.【題目詳解】解:連接OC,設(shè)OE=3x,EB=2x,
∴OB=OC=5x,
∵AB=20cm
∴10x=20
∴x=2cm,∴OC=10cm,OE=6cm,
∴由勾股定理可知:CE=cm,
∴CD=2CE=1cm,
故答案為:1.【題目點撥】本題考查垂徑定理的應(yīng)用,解題的關(guān)鍵是根據(jù)勾股定理求出CE的長度,本題屬于基礎(chǔ)題型.18、6【解題分析】根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積.所以c2=4×9,解得c=±6(線段是正數(shù),負值舍去),故答案為6.三、解答題(共66分)19、(1)證明見解析;(2)BD=.【分析】(1)連接OC,由已知可得∠BOC=90°,根據(jù)SAS證明△OCE≌△BFE,根據(jù)全等三角形的對應(yīng)角相等可得∠OBF=∠COE=90°,繼而可證明直線BF是⊙O的切線;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF的長,然后由S△ABF=,即可求出BD=.【題目詳解】解:(1)連接OC,∵AB是⊙O的直徑,,∴∠BOC=90°,∵E是OB的中點,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直線BF是⊙O的切線;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【題目點撥】本題考查了切線的判定、全等三角形的判定與性質(zhì)、勾股定理、三角形面積的不同表示方法,熟練掌握相關(guān)的性質(zhì)與定理是解題的關(guān)鍵.20、(1);(2)【分析】(1)直接利用概率公式求出甲分到A組的概率;(2)將所有情況列出,找出滿足條件:甲、乙恰好分到同一組的情況有幾種,計算出概率.【題目詳解】解:(1)(2)甲乙兩人抽簽分組所有可能出現(xiàn)的結(jié)果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9種,它們出現(xiàn)的可能性相同.所有的結(jié)果中,滿足“甲乙分到同一組”(記為事件A)的結(jié)果有3種,所以P(A)=.【題目點撥】此題主要考查了樹狀圖法求概率,正確利用列舉出所有可能并熟練掌握概率公式是解題關(guān)鍵.21、(1)點B的坐標為(3,1);(2)y=x2﹣x﹣2;(3)點A1在拋物線上;理由見解析;(4)存在,點P(﹣2,1).【分析】(1)首先過點B作BD⊥x軸,垂足為D,通過證明△BDC≌△COA即可得BD=OC=1,CD=OA=2,從而得知B坐標;(2)利用待定系數(shù)法,將B坐標代入即可求得;(3)畫出旋轉(zhuǎn)后的圖形,過點作x軸的垂線,構(gòu)造全等三角形,求出的坐標代入拋物線解析式即可進行判斷;(4)由拋物線的解析式先設(shè)出P的坐標,再根據(jù)中心對稱的性質(zhì)與線段中點的公式列出方程求解即可.【題目詳解】(1)如圖1,過點B作BD⊥x軸,垂足為D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,在△BDC和△COA中:∵∠BDC=∠COA,∠BCD=∠CAO,CB=AC,∴△BDC≌△COA(AAS),∴BD=OC=1,CD=OA=2,∴點B的坐標為(3,1);(2)∵拋物線y=ax2﹣ax﹣2過點B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴拋物線的解析式為y=x2﹣x﹣2;(3)旋轉(zhuǎn)后如圖1所示,過點A1作A1M⊥x軸,∵把△ABC繞著點C逆時針旋轉(zhuǎn)90°,∴∠ABC=∠A1BC=90°,∴A1,B,C共線,在三角形BDC和三角形A1CM中:∵∠BDC=∠A1MC=90°,∠BCD=∠A1CM,A1C=BC,∴△BDC≌△A1CM∴CM=CD=3﹣1=2,A1M=BD=1,∴OM=1,∴點A1(﹣1,﹣1),把點x=﹣1代入y=x2﹣x﹣2,y=﹣1,∴點A1在拋物線上.(4)設(shè)點P(t,t2﹣t﹣2),點A(0,2),點C(1,0),點B(3,1),若點P和點C對應(yīng),由中心對稱的性質(zhì)和線段中點公式可得:,,無解,若點P和點A對應(yīng),由中心對稱的性質(zhì)和線段中點公式可得:,,無解,若點P和點B對應(yīng),由中心對稱的性質(zhì)和線段中點公式可得:,,解得:t=﹣2,t2﹣t﹣2=1所以:存在,點P(﹣2,1).【題目點撥】本題主要考查了拋物線與幾何圖形的綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.22、(1)詳見解析;(2);(3)【分析】(1)如圖所示,連接OD.由題意可知∠A=∠B=∠C=60°,則OD=OB,可以證明△OBD為等邊三角形,易得∠C=∠ODB=60°,再運用平行線的性質(zhì)和判定以及等量代換即可完成解答.(2)先說明OD為△ABC的中位線,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得CF=CD,則AF=AC-CF=2,最后在Rt△AFG中,根據(jù)正弦的定義即可解答;(3)作DH⊥FG,CD=6,CF=3,DF=3,FH=,DH=,最后根據(jù)三角形的面積公式解答即可.【題目詳解】解:(1)如圖所示,連接OD.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°∵OD=OB∴△OBD為等邊三角形,∴∠C=∠ODB=60°,∴AC∥OD,∴∠CFD=∠FDO,∵DF⊥AC,∴∠CFD=∠FDO=20°,∴DF是⊙O的切線(2)因為點O是AB的中點,則OD是△ABC的中位線.∵△ABC是等邊三角形,AB=1,∴AB=AC=BC=1,CD=BD=BC=6∵∠C=60°,∠CFD=20°,∴∠CDF=30°,同理可得∠AFG=30°,∴CF=CD=3∴AF=1-3=2.∴.(3)作DH⊥FG,CD=6,CF=3,DF=3∴FH=,DH=∴△FDG的面積為DHFG=【題目點撥】本題考查了切線的性質(zhì)、等邊三角形的性質(zhì)以及解直角三角形等知識,連接圓心與切點的半徑是解決問題的常用方法.23、(1)y=﹣x2+x+1;(2)D的坐標為(1,1);(1)【分析】(1)通過拋物線y=先求出點A的坐標,推出OA的長度,再由tan∠CAO=1求出OC的長度,點C的坐標,代入原解析式即可求出結(jié)論;(2)如圖2,過點D分別作x軸和y軸的垂線,垂足分別為W和Z,證△DZE≌△DWB,得到DZ=DW,由此可知點D的橫縱坐標相等,設(shè)出點D坐標,代入拋物線解析式即可求出點D坐標;(1)如圖1,連接CD,分別過點C,H作F的垂線,垂足分別為Q,I,過點F作DC的垂線,交DC的延長線于點U,先求出點G坐標,求出直線DG解析式,再求出點F的坐標,即可求出正方形FMND的邊長,再求出其對角線FN的長度,最后證點F,K,M,N,D共圓,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【題目詳解】解:(1)在拋物線y=中,當(dāng)y=0時,x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=1,∴OC=1OA=1,∴C(0,1),∴a=1,∴a=2,∴拋物線的解析式為:y=﹣x2+x+1;(2)如圖2,過點D分別作x軸和y軸的垂線,垂足分別為W和Z,∵∠ZDW=∠EDB=90°,∴∠ZDE=∠WDB,∵∠DZE=∠DWB=90°,DE=DB,∴△DZE≌△DWB(AAS),∴DZ=DW,設(shè)點D(k,﹣k2+k+1),∴k=﹣k2+k+1,解得,k1=﹣(舍去),k2=1,∴D的坐標為(1,1);(1)如圖1,連接CD,分別過點C,H作F的垂線,垂足分別為Q,I,∵sin∠DGH=∴設(shè)HI=4m,HG=5m,則IG=1m,由題意知,四邊形OCDH是正方形,∴CD=DH=1,∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,∴∠CDQ=∠DHI,又∵∠CQD=∠DIH=90°,∴△CQD≌△DIH(AAS),設(shè)DI=n,則CQ=DI=n,DQ=HI=4m,∴IQ=DQ﹣DI=4m﹣n,∴GQ=GI﹣IQ=1m﹣(4m﹣n)=n﹣m,∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,∴∠GCQ=∠CDQ,∴△GCQ∽△CDQ,∴∴∴n=2m,∴CQ=DI=2m,∴IQ=2m,∴tan∠CDG=,∵CD=1,∴CG=,∴GO=CO﹣CG=,設(shè)直線DG的解析式為y=kx+,將點D(1,1)代入,得,k=,∴yDG=,設(shè)點F(t,﹣t2+t+1),則﹣t2+t+1=t+,解得,t1=1(舍去),t2=﹣,∴F(﹣,)過點F作DC的垂線,交DC的延長線于點U,則,∴在Rt△UFD中,DF=,由翻折知,△NPM≌△NPT,∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,又∵NS⊥KD,∴∠DNS=∠TNS,DS=TS,∴∠SNK=∠TNP+∠TNS=×90°=45°,∴∠SKN=45°,∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,∴∠TPK=∠MPK,又∵PK=PK,∴△TPK≌△MPK(SAS),∴∠MKP=∠TKP=45°,∴∠DKM=∠MKP+∠TKP=90°,連接FN,DM,交點為R,再連接RK,則RK=RF=RD=RN=RM,則點F,D,N,M,K同在⊙R上,F(xiàn)N為直徑,∴∠FKN=90°,∠KDN=∠KFN,∵FN=,∴在Rt△FKN中,∴cos∠KDN=cos∠KFN.【題目點撥】考核知識點:二次函數(shù)綜合題.熟記二次函數(shù)基本性質(zhì),數(shù)形結(jié)合分析問題是關(guān)鍵.24、10【分析】設(shè),根據(jù)三角函數(shù)表示出其它線段,最終表示出BE、AB,然后在三角形ABE中根據(jù)勾股定理即可求出AB.【題目詳解】解:∵是矩形,沿翻折∴,BE=EF,∠AFE=∠B=∠D=,∴∠AFD+∠DAF=∠AFD+∠EFC=,∴∠DAF=∠EFC,∴,設(shè),則∴,∴,∴AD=8k,∴,∴,∴,∴,∵,∴,∴,∴.【題目點撥】此題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角函數(shù)的定義以及勾股定理.此題難度適中,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.25、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)將點代入,求出,將點代入,即可求函數(shù)解析式;(2)如圖,過作軸,交于,求出的解析式,設(shè),表示點坐標,表示長度,利用,建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)求最值即可,(3)可證明△MAD是等腰直角三角形,由△QMN與△MAD相似,則△QMN是等腰直角三角形,設(shè)①當(dāng)MQ⊥QN時,N(3,0);②當(dāng)QN⊥MN時,過點N作NR⊥x軸,過點M作MS⊥RN交于點S,由(AAS),建立方程求解;③當(dāng)QN⊥MQ時,過點Q作x軸的垂線,過點N作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南信息職業(yè)技術(shù)學(xué)院2024年單招考試職業(yè)技能測試E組樣題
- 設(shè)計方案優(yōu)化函
- 2025年信貸調(diào)整協(xié)商協(xié)議
- 2025年醫(yī)院合同管理策略與優(yōu)化措施
- 2025年互聯(lián)網(wǎng)電商員工保密協(xié)議規(guī)范
- 2025年獵頭項目立項申請報告模范
- 2025年二手住宅帶閣樓出售合同規(guī)范
- 2025年煙膠項目立項申請報告模稿
- 2025年二手房合同糾紛隱患與預(yù)防
- 2025年策劃主播合作框架協(xié)議范本
- 紅色中國風(fēng)2025靈蛇賀歲
- 教師校園食品安全培訓(xùn)
- 烈士褒揚課件教學(xué)課件
- 公務(wù)用車分時租賃實施方案
- 《論語》原文-翻譯-完整版
- 中醫(yī)適宜技術(shù)-中藥熱奄包
- 壓瘡的預(yù)防和護理
- 《手衛(wèi)生知識培訓(xùn)》培訓(xùn)課件
- 算力時代全光網(wǎng)架構(gòu)研究報告(2024年)
- 2024年江蘇省淮安市中考英語試題卷(含答案解析)
- 2025屆高考作文素材:《黑神話 悟空》高考作文和素材運用
評論
0/150
提交評論