![科技英語第二次課-game-theory課件_第1頁](http://file4.renrendoc.com/view/6aade3aca7bd982bb2d7ec786040e764/6aade3aca7bd982bb2d7ec786040e7641.gif)
![科技英語第二次課-game-theory課件_第2頁](http://file4.renrendoc.com/view/6aade3aca7bd982bb2d7ec786040e764/6aade3aca7bd982bb2d7ec786040e7642.gif)
![科技英語第二次課-game-theory課件_第3頁](http://file4.renrendoc.com/view/6aade3aca7bd982bb2d7ec786040e764/6aade3aca7bd982bb2d7ec786040e7643.gif)
![科技英語第二次課-game-theory課件_第4頁](http://file4.renrendoc.com/view/6aade3aca7bd982bb2d7ec786040e764/6aade3aca7bd982bb2d7ec786040e7644.gif)
![科技英語第二次課-game-theory課件_第5頁](http://file4.renrendoc.com/view/6aade3aca7bd982bb2d7ec786040e764/6aade3aca7bd982bb2d7ec786040e7645.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Unit1MathematicsUnit1Mathematics1Warming-upMathematicshasawideapplication,suchascomputer,economy.Nowithasbeenbroadentheoreticallyandappliedtomanysocialproblems.Ithasdrivenarevolutionineconomictheory.Ithasalsofoundapplicationinsociologyandpsychology,andestablishedlinkswithevolutionandbiology.OnesignificantapplicationisGameTheorywhichreceivedspecialattentionwiththeawardingoftheNobelPrizeineconomicstoJohnNash.Warming-upMathematicshasawi2TextAGameTheory博弈論TextAGameTheory3GameTheoryGametheoryisthemathematicalanalysisofanysituationinvolvingaconflictofinterest,withtheintentofindicatingtheoptimalchoicesthat,undergivenconditions,willleadtoadesiredoutcome.
GameTheoryGametheoryisthe4Itattemptstodeterminemathematicallyandlogically
theactionsthat“players”shouldtaketosecurethebestoutcomesforthemselvesinawidearrayof“games”.它試圖以數(shù)學(xué)和邏輯的方法幫助博弈者作出決策,使他們在一系列紛繁復(fù)雜的博弈中保證利益的最大化。
Itattemptstodeterminemathe5zero-sumgamesIngametheoryandeconomictheory,zero-sumdescribesasituationinwhichaparticipant'sgainorlossisexactlybalancedbythelossesorgainsoftheotherparticipant(s).Examples:賭博zero-sumgamesIngametheory6Moretypicalaregameswiththepotentialforeithermutualgainormutualharm,aswellassomeconflict.更多具有代表性的例子可能會導(dǎo)致共同得利博弈和共同損失博弈,同樣的情況還會發(fā)生在另外一些沖突中。Moretypicalaregameswithth7GametheorywaspioneeredbyPrincetonmathematicianJohnvonNeumann.更多具有代表性的例子可能會導(dǎo)致共同得利博弈和共同損失博弈,同樣的情況還會發(fā)生在另外一些沖突中。GametheorywaspioneeredbyP8PrincetonPrincetonUniversityisaprivateresearchuniversitylocatedinPrinceton,NewJersey,UnitedStates.TheschoolisoneoftheeightuniversitiesoftheIvyLeagueandisconsideredoneoftheColonialColleges.PrincetonPrincetonUniversity9JohnvonNeumannAHungarian-bornAmericanmathematicsandmadecontributiontoquantumphysics,functionalanalysis,settheory,economics,computerscience,topology,numericalanalysis,hydrodynamics,statisticsandmayothermathematicalfieldsasoneofwordhistory’soutstandingmathematicians.JohnvonNeumannAHungarian-b10Whenthinkingabouthowotherswillrespond,onemustputoneselfintheirshoes,andthinkastheywould;oneshouldnotimposeone’sownreasoningonthem.在考慮其他博弈者會如何應(yīng)對時,博弈者必須能設(shè)身處地地?fù)Q位思考,而不能把自己的主觀判斷強(qiáng)加于人。Whenthinkingabouthowothers11tic-tac-toe井字棋Tic-tack-toeisapencil-and-papergameinwhichtwoplayersalternatelyputcrosses(0)andcircles(×)inoneofthecompartmentsofasquaregridofninespaces.Theplayerwhosucceedsinplacingthreerespectivemarksinahorizontal,verticalordiagonalrowwinsthegame.tic-tac-toe井字棋Tic-tack-toei12Incontrasttothelinearchainofreasoningforsequentialgames,agamewithsimultaneousmovesinvolvesalogicalcircle.與連續(xù)策略博弈的線性思維不同,聯(lián)立策略的博弈涉及邏輯循環(huán)。Incontrasttothelinearcha13JohnNashJohnForbesNashJr.(bornJune13,1928)isanAmericanmathematicianandeconomistwhoseworksingametheory,differentialgeometry,andpartialdifferentialequationshaveprovidedinsightintotheforcesthatgovernchanceandeventsinsidecomplexsystemsindailylife.JohnNashJohnForbesNashJr14Nashequilibrium納什均衡,又稱為非合作博弈均衡ANashequilibrium,namedafterJohnNash,isasetofstrategies,oneforeachplayer,suchthatnoplayerhasincentivetounilaterallychangeheraction.Nashequilibrium納什均衡,又稱為非合作博弈15Whenwesaythatanoutcomeisanequilibrium,thereisnopresumptionthateachperson’sprivatelybestchoicewillleadtoacollectivelyoptimalresult.當(dāng)我們把博弈的結(jié)果表述為一種均衡的時候,并不能假定博弈的每個參與者的個人最佳策略將帶來共同的最優(yōu)化結(jié)果。Whenwesaythatanoutcomei16Nash’snotionofequilibriumremainsanincompletesolutiontotheproblemofcircularreasoninginsimultaneous-movegames.納什關(guān)于均衡的概念還不能完全解決聯(lián)立策略博弈中邏輯循環(huán)的問題。Nash’snotionofequilibrium17Andthedynamicprocessthatcanleadtoanequilibriumisleftunspecified.納什均衡還沒有清除地說明關(guān)于導(dǎo)致均衡的動態(tài)過程。Andthedynamicprocessthatc18Prisoners’dilemma囚徒困境Ingametheory,theprisoners’dilemmaisatypeofnon-zerogameinwhichtwoplayerscancooperatewithordefecttheotherplayer.Prisoners’dilemma囚徒困境19Prisoners’dilemmaTwosuspectsarearrestedbythepolice.Thepolicehaveinsufficientevidenceforaconviction,and,havingseparatedbothprisoners,visiteachofthemtoofferthesamedeal.Ifonetestifies(defectsfromtheother)fortheprosecutionagainsttheotherandtheotherremainssilent(cooperateswiththeother),thebetrayergoesfreeandthesilentaccomplicereceivesthefull8-yearsentence.Ifbothremainsilent,bothprisonersaresentencedtoonlyoneyearinjailforaminorcharge.Ifeachbetraystheother,eachreceivesafive-yearsentence.Eachprisonermustchoosetobetraytheotherortoremainsilent.Eachoneisassuredthattheotherwouldnotknowaboutthebetrayalbeforetheendoftheinvestigation.Ifweassumethateachplayercaresonlyaboutminimizinghisorherowntimeinjail,howshouldtheprisonersact?Prisoners’dilemmaTwosusp20警方逮捕A、B兩名嫌疑犯,但沒有足夠證據(jù)指控二人入罪。于是警方分開囚禁嫌疑犯,分別和二人見面,并向雙方提供以下相同的選擇:若一人認(rèn)罪并作證檢舉對方(相關(guān)術(shù)語稱“背叛”對方),而對方保持沉默,此人將即時獲釋,沉默者將判監(jiān)8年。若二人都保持沉默(相關(guān)術(shù)語稱互相“合作”),則二人同樣判監(jiān)一年。若二人都互相檢舉(互相“背叛”),則二人同樣判監(jiān)5年。囚徒困境假定每個參與者(即“囚徒”)都是利己的,即都尋求最大自身利益,而不關(guān)心另一參與者的利益。警方逮捕A、B兩名嫌疑犯,但沒有足夠證據(jù)指控二人入罪。于是警21Gametheoryquantifiesthisinsightanddetailstherightproportionsofsuchmixtures.博弈論為提高洞察力和掌握混合性策略恰當(dāng)?shù)幕鸷蛱峁┝藚⒖肌ametheoryquantifiesthisin22CortésHernánCortéswasaSpanishexplorerwhoisfamousmainlyforhismarchacrossMexicoandhisconqueringoftheAztecEmpireinMexico.CortésHernánCortéswasa23strategyofbrinkmanshipBrinkmanshipisthepracticeofpushingadangeroussituationtothevergeofdisasterinordertoachievethemostadvantageousoutcome.Itoccursininternationalpolitics,foreignpolicy,labourrelations,and(incontemporarysettings)inmilitarystrategyinvolvingthethreateneduseofnuclearweapons.strategyofbrinkmanshipBrink24ThomasSchellingThomasCrombieSchelling(born14April1921)isanAmericaneconomistandprofessorofforeignaffairs,nationalsecurity,nuclearstrategy,andarmscontrolattheSchoolofPublicPolicyatUniversityofMaryland,CollegePark.Hewasawardedthe2005NobelMemorialPrizeinEconomicSciences(sharedwithRobertAumann)for"havingenhancedourunderstandingofconflictandcooperationthroughgame-theoryanalysis."ThomasSchellingThomasCrombie25WinstonChurchillHewastheEnglishstatesmanandauthor,bestknownasPrimeMinisteroftheUnitedKingdomduringtheWWWII.Well-knownasanorator,strategist,andpolitician,ChurchillwasonetheimportantleadersinmodernBritishandworldhistory.Hewonthe1953NobelPrizeinLiteratureforhismanybooksonEnglishandworldhistory.WinstonChurchillHewastheEn26Toconveyinformation,useanactionthatiscredible“signal”,somethingthatwouldnotbedesirableifthecircumstanceswereotherwise.Forexample,anextendedwarrantyisacrediblesignaltotheconsumerthatthefirmbelievesitisproducingahigh-qualityproduct.如果要公布信息,就要采用傳遞可信信息的策略,而且形勢發(fā)生變化時策略也必須相應(yīng)進(jìn)行改變,例如,提供長期的質(zhì)量保證是企業(yè)生產(chǎn)高質(zhì)量產(chǎn)品信心的顯示,對于消費(fèi)者來說也是一個可以信賴的信號。Toconveyinformation,usean27ExerciseIVMultipleChoice1.D2.D3.D4.B5.B
6. C7. D8. A9. B10. DExerciseIVMultipleChoice1.28ExerciseVBlankFilling1.prime 2.interactive3.purchasing4.journal5.enhances6.abuse7.methodology8.modeling9.preferences10.constructingExerciseVBlankFilling1.pri29ExerciseVICloze1. B2. A3. C4. D5. A6. C7. D8. B9. A10. C11. D12. B13. A14. C15. D16. B17. D18. A19. D20. DExerciseVICloze1. B11. D30TranslationPractice(P.18)1.互贏博弈和互敗博弈2.連續(xù)策略博弈3.聯(lián)立策略博弈4.直線推理5.循環(huán)推理6.納什均衡7.支配化策略8.最優(yōu)化結(jié)果9.合作破裂10.邊緣化策略TranslationPractice(P.18)1.互31TranslationPractice(P.18)1.pu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人民版道德與法治九年級上冊第七課《生命之間》配套聽課評課記錄
- 湘教版七年級數(shù)學(xué)下冊第2章2.1.2冪的乘方與積的乘方(第1課時)聽評課記錄
- 人教版七年級數(shù)學(xué)上冊:1.2.1《有理數(shù)》聽評課記錄
- 冀教版數(shù)學(xué)九年級上冊《平行線分線段成比例》聽評課記錄1
- 《兩漢的科技和文化》聽課評課記錄1(新部編人教版七年級上冊歷史)
- 蘇教版四年級數(shù)學(xué)下冊期末復(fù)習(xí)口算練習(xí)題三
- 湘教版數(shù)學(xué)八年級上冊《小結(jié)練習(xí)》聽評課記錄
- 聽評課記錄數(shù)學(xué)二年級
- 小學(xué)生營養(yǎng)餐飯?zhí)霉ぷ魅藛T聘用合同范本
- 人員派遣租賃協(xié)議書范本
- 防洪防汛安全知識教育課件
- (正式版)FZ∕T 80014-2024 潔凈室服裝 通 用技術(shù)規(guī)范
- 新起點(diǎn)英語二年級下冊全冊教案
- 【幼兒園戶外體育活動材料投放的現(xiàn)狀調(diào)查報告(定量論文)8700字】
- 剪映專業(yè)版:PC端短視頻制作(全彩慕課版) 課件 第3章 短視頻剪輯快速入門
- 湖南省長沙市開福區(qū)青竹湖湘一外國語學(xué)校2023-2024學(xué)年九年級下學(xué)期一模歷史試題
- 帶狀皰疹與帶狀皰疹后遺神經(jīng)痛(HZ與PHN)
- 漢密爾頓抑郁和焦慮量表
- 風(fēng)電場事故案例分析
- 前列腺癌的診斷與治療
- 人教版八年級數(shù)學(xué)初中數(shù)學(xué)《平行四邊形》單元教材教學(xué)分析
評論
0/150
提交評論