山東省德州地區(qū)2024屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第1頁
山東省德州地區(qū)2024屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第2頁
山東省德州地區(qū)2024屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第3頁
山東省德州地區(qū)2024屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第4頁
山東省德州地區(qū)2024屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省德州地區(qū)2024屆數(shù)學(xué)九上期末統(tǒng)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.電腦福利彩票中有兩種方式“22選5”和“29選7”,若選中號碼全部正確則獲一等獎,你認(rèn)為獲一等獎機會大的是()A.“22選5” B.“29選7” C.一樣大 D.不能確定2.如圖,點的坐標(biāo)為,點,分別在軸,軸的正半軸上運動,且,下列結(jié)論:①②當(dāng)時四邊形是正方形③四邊形的面積和周長都是定值④連接,,則,其中正確的有()A.①② B.①②③ C.①②④ D.①②③④3.下列圖形:①國旗上的五角星,②有一個角為60°的等腰三角形,③一個半徑為π的圓,④兩條對角線互相垂直平分的四邊形,⑤函數(shù)y=的圖象,其中既是軸對稱又是中心對稱的圖形有()A.有1個 B.有2個 C.有3個 D.有4個4.式子在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.5.如圖,將繞點按逆時針方向旋轉(zhuǎn)后得到,若,則的度數(shù)是()A. B. C. D.6.如圖,在△ABC中,點D、E分別在AB、AC邊上,DE與BC不平行,那么下列條件中,不能判斷△ADE∽△ACB的是()A.∠ADE=∠C B.∠AED=∠B C. D.7.如圖,在△ABC中,D、E分別是AB、AC上的點,DE∥BC,且AD=2,AB=3,AE=4,則AC等于()A.5 B.6 C.7 D.88.如圖是正方體的一種平面展開圖,它的每個面上都有一個漢字,那么在原正方體的表面上,與漢字“治”相對的面上的漢字是()A.全 B.面 C.依 D.法9.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.1210.拋物線y=x2+6x+9與x軸交點的個數(shù)是()A.0 B.1 C.2 D.311.下列事件是必然事件的是()A.打開電視機,正在播放動畫片 B.經(jīng)過有交通信號燈的路口,遇到紅燈C.過三點畫一個圓 D.任意畫一個三角形,其內(nèi)角和是12.已知一組數(shù)據(jù)2,3,4,x,1,4,3有唯一的眾數(shù)4,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.3 C.4 D.5二、填空題(每題4分,共24分)13.飛機著陸后滑行的距離y(m)與滑行時間x(s)的函數(shù)關(guān)系式為y=﹣x2+60x,則飛機著陸后滑行_____m才停下來.14.若關(guān)于x的一元二次方程x2﹣2kx+1-4k=0有兩個相等的實數(shù)根,則代數(shù)式(k-2)2+2k(1-k)的值為______.15.計算:2cos30°+tan45°﹣4sin260°=_____.16.若,那么△ABC的形狀是___.17.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.18.二次函數(shù)y=圖像的頂點坐標(biāo)是__________.三、解答題(共78分)19.(8分)甲、乙、丙三人進行乒乓球比賽.他們通過摸球的方式?jīng)Q定首場比賽的兩個選手:在一個不透明的口袋中放入兩個紅球和一個白球,這些球除顏色外其他都相同,將它們攪勻,三人從中各摸出一個球,摸到紅球的兩人即為首場比賽選手.求甲、丙兩人成為比賽選手的概率.(請用畫樹狀圖或列表等方法寫出分析過程并給出結(jié)果.)20.(8分)某校要求八年級同學(xué)在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓(xùn)練,為了了解八年級學(xué)生參加球類活動的整體情況,現(xiàn)以八年級(2)班作為樣本,對該班學(xué)生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:八年級(2)班參加球類活動人數(shù)情況統(tǒng)計表項目籃球足球乒乓球排球羽毛球人數(shù)a6576八年級(2)班學(xué)生參加球類活動人數(shù)情況扇形統(tǒng)計圖根據(jù)圖中提供的信息,解答下列問題:(1)a=,b=.(2)該校八年級學(xué)生共有600人,則該年級參加足球活動的人數(shù)約人;(3)該班參加乒乓球活動的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.21.(8分)解方程:(1)2x2+3x﹣1=0(2)22.(10分)已知矩形的周長為1.(1)當(dāng)該矩形的面積為200時,求它的邊長;(2)請表示出這個矩形的面積與其一邊長的關(guān)系,并求出當(dāng)矩形面積取得最大值時,矩形的邊長.23.(10分)如圖,已知EC∥AB,∠EDA=∠ABF.(1)求證:四邊形ABCD是平行四邊形;(2)求證:=OE?OF.24.(10分)如圖,點A在軸上,OA=6,將線段OA繞點O順時針旋轉(zhuǎn)120°至OB的位置.(1)求點B的坐標(biāo);(2)求經(jīng)過點A、O、B的拋物線的解析式.25.(12分)已知:△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.(1)求證:AD平分∠BAC;(2)若DF∥AB,則BD與CD有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.26.如圖,在?ABCD中,作對角線BD的垂直平分線EF,垂足為O,分別交AD,BC于E,F(xiàn),連接BE,DF.求證:四邊形BFDE是菱形.

參考答案一、選擇題(每題4分,共48分)1、A【解題分析】從22個號碼中選1個號碼能組成數(shù)的個數(shù)有22×21×20×19×18=3160080,選出的這1個號碼能組成數(shù)的個數(shù)為1×4×3×2×1=120,這1個號碼全部選中的概率為120÷3160080=3.8×10?1;從29個號碼中選7個號碼能組成數(shù)的個數(shù)為29×28×27×26×21×24×23=7866331200,這7個號碼能組成數(shù)的個數(shù)為7×6×1×4×3×2×1=1040,這7個號碼全部選中的概率為1040÷7866331200=6×10?8,因為3.8×10?1>6×10?8,所以,獲一等獎機會大的是22選1.故選A.2、A【分析】過P作PM⊥y軸于M,PN⊥x軸于N,易得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證得△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【題目詳解】過P作PM⊥y軸于M,PN⊥x軸于N,

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPN=∠APB=90°,

∴∠MPA=∠NPB.

在△MPA≌△NPB中,,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當(dāng)OA=OB,即OA=OB=1時,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴.

∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.

∵∠AOB+∠APB=180°,

∴點A、O、B、P共圓,且AB為直徑,所以AB≥OP,故④錯誤.

故選:A.【題目點撥】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,圓周角定理,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON3、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義可得答案.【題目詳解】解:①國旗上的五角星,是軸對稱圖形,不是中心對稱圖形;②有一個角為60°的等腰三角形,是軸對稱圖形,是中心對稱圖形;③一個半徑為π的圓,是軸對稱圖形,是中心對稱圖形;④兩條對角線互相垂直平分的四邊形,是軸對稱圖形,是中心對稱圖形;⑤函數(shù)y=的圖象,不是軸對稱圖形,是中心對稱圖形;既是軸對稱又是中心對稱的圖形有3個,故選:C.【題目點撥】此題主要考查了軸對稱圖形和中心對稱圖形,以及反比例函數(shù)圖象和線段垂直平分線,關(guān)鍵是掌握軸對稱圖形和中心對稱圖形定義.4、C【分析】根據(jù)二次根式有意義的條件進行求解即可.【題目詳解】由題意得:x-1≥0,解得:x≥1,故選C.【題目點撥】本題考查了二次根式有意義的條件,熟知二次根式的被開方數(shù)為非負(fù)數(shù)是解題的關(guān)鍵.5、A【分析】根據(jù)繞點按逆時針方向旋轉(zhuǎn)后得到,可得,然后根據(jù)可以求出的度數(shù).【題目詳解】∵繞點按逆時針方向旋轉(zhuǎn)后得到∴又∵∴【題目點撥】本題考查的是對于旋轉(zhuǎn)角的理解,能利用定義從圖形中準(zhǔn)確的找出旋轉(zhuǎn)角是關(guān)鍵.6、C【解題分析】根據(jù)已知條件知∠A=∠A,再添加選項中的條件依次判斷即可得到答案.【題目詳解】解:∵∠A=∠A,∴添加∠ADE=∠C,△ADE∽△ACB,故A正確;∴添加∠AED=∠B,△ADE∽△ACB,故B正確;∴添加,△ADE∽△ACB,故D正確;故選:C.【題目點撥】此題考查相似三角形的判定定理,已知一個角相等時,再確定另一組角相等或是構(gòu)成已知角的兩邊對應(yīng)成比例,即可證明兩個三角形相似.7、B【分析】根據(jù)平行線分線段成比例定理列出比例式,計算即可.【題目詳解】∵DE∥BC,∴,∴,∴AC=6,故選:B.【題目點撥】本題考查的是平行線分線段成比例定理,難度系數(shù)不高,解題關(guān)鍵是找準(zhǔn)對應(yīng)線段.8、C【分析】首先將展開圖折疊,即可得出與漢字“治”相對的面上的漢字.【題目詳解】由題意,得與漢字“治”相對的面上的漢字是“依”,故答案為C.【題目點撥】此題主要考查對正方體展開圖的認(rèn)識,熟練掌握,即可解題.9、D【解題分析】根據(jù)正方形的性質(zhì)可得出AB∥CD,進而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出=2,結(jié)合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【題目詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【題目點撥】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì),利用相似三角形的性質(zhì)求出AF的長度是解題的關(guān)鍵.10、B【分析】根據(jù)題意,求出b2﹣4ac與0的大小關(guān)系即可判斷.【題目詳解】∵b2﹣4ac=36﹣4×1×9=0∴二次函數(shù)y=x2+6x+9的圖象與x軸有一個交點.故選:B.【題目點撥】此題考查的是求二次函數(shù)與x軸的交點個數(shù),掌握二次函數(shù)與x軸的交點個數(shù)和b2﹣4ac的符號關(guān)系是解決此題的關(guān)鍵.11、D【分析】必然事件是在一定條件下,必然會發(fā)生的事件.依據(jù)定義判斷即可.【題目詳解】A.打開電視機,可能正在播放新聞或其他節(jié)目,所以不是必然事件;B.經(jīng)過有交通信號燈的路口,遇到紅燈,也可能遇到綠燈,所以不是必然事件;C.過三點畫一個圓,如果這三點在一條直線上,就不能畫圓,所以不是必然事件;D.任意畫一個三角形,其內(nèi)角和是,是必然事件.故選:D【題目點撥】本題考查的是必然事件,必然事件是一定發(fā)生的事件.12、B【分析】根據(jù)題意由有唯一的眾數(shù)4,可知x=4,然后根據(jù)中位數(shù)的定義求解即可.【題目詳解】∵這組數(shù)據(jù)有唯一的眾數(shù)4,∴x=4,∵將數(shù)據(jù)從小到大排列為:1,2,1,1,4,4,4,∴中位數(shù)為:1.故選B.【題目點撥】本題考查了眾數(shù)、中位數(shù)的定義,屬于基礎(chǔ)題,掌握基本定義是關(guān)鍵.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù).當(dāng)有奇數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置的數(shù);當(dāng)有偶數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置兩個數(shù)的平均數(shù).二、填空題(每題4分,共24分)13、600【分析】根據(jù)飛機從滑行到停止的路程就是滑行的最大路程,即是求函數(shù)的最大值.【題目詳解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20時,y取得最大值,此時y=600,即該型號飛機著陸后滑行600m才能停下來.故答案為600.【題目點撥】本題主要考查了二次函數(shù)的應(yīng)用,運用二次函數(shù)求最值問題常用公式法或配方法得出是解題關(guān)鍵.14、【分析】根據(jù)題意可得一元二次方程根的判別式為0,列出含k的等式,再將所求代數(shù)進行變形后整體代入求值即可.【題目詳解】解:∵一元二次方程x2﹣2kx+1-4k=0有兩個相等的實數(shù)根,∴,整理得,,∴當(dāng)時,故答案為:.【題目點撥】本題考查一元二次方程根的判別式與根個數(shù)之間的關(guān)系,根據(jù)根的個數(shù)確定根的判別式的符號是解答此題的關(guān)鍵.15、1【分析】首先計算乘方,然后計算乘法,最后從左向右依次計算,求出算式的值是多少即可.【題目詳解】解:2cos30°+tan45°﹣4sin260°=2×+1﹣4×=3+1﹣4×=4﹣3=1故答案為:1.【題目點撥】此題主要考查了實數(shù)的運算,要熟練掌握,解答此題的關(guān)鍵是要明確:在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數(shù)的運算律在實數(shù)范圍內(nèi)仍然適用.16、等邊三角形【分析】由非負(fù)性和特殊角的三角函數(shù)值,求出∠A和∠B的度數(shù),然后進行判斷,即可得到答案.【題目詳解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等邊三角形;故答案為:等邊三角形.【題目點撥】本題考查了特殊角的三角函數(shù)值,非負(fù)性的應(yīng)用,解題的關(guān)鍵是熟練掌握非負(fù)數(shù)的性質(zhì),正確得到∠A和∠B的度數(shù).17、1【解題分析】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關(guān)于x的方程,解之可得.【題目詳解】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【題目點撥】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質(zhì).18、(-5,-3)【分析】根據(jù)頂點式,其頂點坐標(biāo)是,對照即可解答.【題目詳解】解:二次函數(shù)是頂點式,頂點坐標(biāo)為.故答案為:.【題目點撥】此題主要考查了利用二次函數(shù)頂點式求頂點坐標(biāo),此題型是中考中考查重點,同學(xué)們應(yīng)熟練掌握.三、解答題(共78分)19、.【解題分析】先畫樹狀圖得到所有等可能的情況,然后找出符合條件的情況數(shù),利用概率公式求解即可.【題目詳解】畫樹狀圖為:由樹狀圖知,共有6種等可能的結(jié)果數(shù),其中甲、丙兩人成為比賽選手的結(jié)果有2種,所以甲、丙兩人成為比賽選手的概率為=.【題目點撥】本題考查了列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)a=16,b=17.5(2)90(3)【解題分析】試題分析:(1)首先求得總?cè)藬?shù),然后根據(jù)百分比的定義求解;(2)利用總數(shù)乘以對應(yīng)的百分比即可求解;(3)利用列舉法,根據(jù)概率公式即可求解.試題解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案為16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案為90;(3)如圖,∵共有20種等可能的結(jié)果,兩名主持人恰為一男一女的有12種情況,∴則P(恰好選到一男一女)==.考點:列表法與樹狀圖法;用樣本估計總體;扇形統(tǒng)計圖.21、(1)x1=,x2=;(2)x=【分析】(1)將方程化為一般形式ax2+bx+c=0確定a,b,c的值,然后檢驗方程是否有解,若有解,代入公式即可求解;(2)最簡公分母是(x+2)(x﹣2),去分母,轉(zhuǎn)化為整式方程求解,需檢驗結(jié)果是否為原方程的解;【題目詳解】解:(1)∵a=2,b=3,c=-1,∴=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=,∴x1=,x2=;(2)方程兩邊都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,檢驗:當(dāng)x=時,(x+2)(x﹣2)≠0,所以x=是原方程的解;【題目點撥】本題主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解題的關(guān)鍵.22、(1)矩形的邊長為10和2;(2)這個矩形的面積S與其一邊長x的關(guān)系式是S=-x2+30x;當(dāng)矩形的面積取得最大值時,矩形是邊長為15的正方形.【分析】(1)設(shè)矩形的一邊長為,則矩形的另一邊長為,根據(jù)矩形的面積為20列出相應(yīng)的方程,從而可以求得矩形的邊長;

(2)根據(jù)題意可以得到矩形的面積與一邊長的函數(shù)關(guān)系,然后根據(jù)二次函數(shù)的性質(zhì)可以求得矩形的最大面積,并求出矩形面積最大時它的邊長.【題目詳解】解:(1)設(shè)矩形的一邊長為,則矩形的另一邊長為,根據(jù)題意,得,解得,.答:矩形的邊長為10和2.(2)設(shè)矩形的一邊長為,面積為S,根據(jù)題意可得,,所以,當(dāng)矩形的面積最大時,.答:這個矩形的面積與其一邊長的關(guān)系式是S=-x2+30x,當(dāng)矩形面積取得最大值時,矩形是邊長為15的正方形.【題目點撥】本題考查二次函數(shù)的應(yīng)用、一元二次方程的應(yīng)用,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程以及函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)解答.23、(1)證明見解析;(2)證明見解析.【解題分析】試題分析:(1)由EC∥AB,∠EDA=∠ABF,可證得∠DAB=∠ABF,即可證得AD∥BC,則得四邊形ABCD為平行四邊形;(2)由EC∥AB,可得,由AD∥BC,可得,等量代換得出,即=OE?OF.試題解析:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四邊形ABCD為平行四邊形;(2)∵EC∥AB,∴△OAB∽△OED,∴,∵AD∥BC,∴△OBF∽△ODA,∴,∴,∴=OE?OF.考點:相似三角形的判定與性質(zhì);平行四邊形的判定與性質(zhì).24、(1)點B的坐標(biāo)是;(2)【分析】(1)過點作軸,垂足為,則OA=OB=6,,解直角三角形即可;(2)可設(shè)拋物線解析式為,將A、B坐標(biāo)代入即可.【題目詳解】解:(1)如圖,過點作軸,垂足為,則..又∵OA=OB=6∴點的坐標(biāo)是;(2)拋物線過原點和點、,可設(shè)拋物線解析式為.將A(6,0),B代入,得,解得:,此拋物線的解析式為:.【題目點撥】本題考查的知識點是旋轉(zhuǎn)的性質(zhì)、求拋物線解析式、解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論