版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆甘肅省隴南市第八中學(xué)數(shù)學(xué)九上期末達標測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上,則tanC的值是()A.2 B. C.1 D.2.如圖,在矩形ABCD中,對角線AC,BD交與點O.已知∠AOB=60°,AC=16,則圖中長度為8的線段有()A.2條 B.4條C.5條 D.6條3.“泱泱華夏,浩浩千秋.于以求之?旸谷之東.山其何輝,韞卞和之美玉……”這是武漢16歲女孩陳天羽用文言文寫70周年閱兵的觀后感.小汀州同學(xué)把這篇氣勢磅礴、文采飛揚的文章放到自己的微博上,并決定用微博轉(zhuǎn)發(fā)的方式傳播.他設(shè)計了如下的傳播規(guī)則:將文章發(fā)表在自己的微博上,再邀請n個好友轉(zhuǎn)發(fā),每個好友轉(zhuǎn)發(fā)之后,又邀請n個互不相同的好友轉(zhuǎn)發(fā),依此類推.已知經(jīng)過兩輪轉(zhuǎn)發(fā)后,共有111個人參與了宣傳活動,則n的值為()A.9 B.10 C.11 D.124.如圖,拋物線交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個結(jié)論:①點C的坐標為(0,m);②當m=0時,△ABD是等腰直角三角形;③若a=-1,則b=4;④拋物線上有兩點P(,)和Q(,),若<1<,且+>2,則>.其中結(jié)論正確的序號是()A.①② B.①②③ C.①②④ D.②③④5.在Rt△ABC中,∠C=90°,AC=5,BC=12,則cosB的值為()A. B. C. D.6.如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,使得點C、A、B1在同一條直線上,那么旋轉(zhuǎn)角等于()A.55° B.70° C.125° D.145°7.如圖,中,,,點是的外心.則()A. B. C. D.8.如圖,在平面直角坐標系中,的頂點在第一象限,點在軸的正半軸上,,,將繞點逆時針旋轉(zhuǎn),點的對應(yīng)點的坐標是()A. B. C. D.9.下列汽車標志中,可以看作是中心對稱圖形的是A. B. C. D.10.在平面直角坐標系中,點M(1,﹣2)與點N關(guān)于原點對稱,則點N的坐標為()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)二、填空題(每小題3分,共24分)11.如圖,在中,,,為邊上的一點,且,若的面積為,則的面積為__________.12.函數(shù)中,自變量的取值范圍是________.13.已知=,則的值是_______.14.已知圓錐的底面圓半徑是1,母線是3,則圓錐的側(cè)面積是______.15.如圖,在△ABC中DE∥BC,點D在AB邊上,點E在AC邊上,且AD:DB=2:3,四邊形DBCE的面積是10.5,則△ADE的面積是____.16.如圖,已知A(,y1),B(2,y2)為反比例函數(shù)y=圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是_____.17.已知圓的半徑是,則該圓的內(nèi)接正六邊形的面積是__________18.若一三角形的三邊長分別為5、12、13,則此三角形的內(nèi)切圓半徑為______.三、解答題(共66分)19.(10分)如圖,是△ABC的外接圓,AB是的直徑,CD是△ABC的高.(1)求證:△ACD∽△CBD;(2)若AD=2,CD=4,求BD的長.20.(6分)如圖,已知一次函數(shù)y1=﹣x+a與x軸、y軸分別交于點D、C兩點和反比例函數(shù)交于A、B兩點,且點A的坐標是(1,3),點B的坐標是(3,m)(1)求a,k,m的值;(2)求C、D兩點的坐標,并求△AOB的面積.21.(6分)如圖,已知拋物線y=﹣x2+bx+c的圖象經(jīng)過(1,0),(0,3)兩點.(1)求b,c的值;(2)寫出當y>0時,x的取值范圍.22.(8分)如圖,為的直徑,、為上兩點,,,垂足為.直線交的延長線于點,連接.(1)判斷與的位置關(guān)系,并說明理由;(2)求證:.23.(8分)已知關(guān)于x的一元二次方程x1=1(1-m)x-m1有兩個實數(shù)根為x1,x1.(1)求m的取值范圍;(1)設(shè)y=x1+x1,求當m為何值時,y有最小值.24.(8分)如圖,中,是的角平分線,,在邊上,以為直徑的半圓經(jīng)過點,交于點.(1)求證:是的切線;(2)已知,的半徑為,求圖中陰影部分的面積.(最后結(jié)果保留根號和)25.(10分)閱讀理解:如圖,在紙面上畫出了直線l與⊙O,直線l與⊙O相離,P為直線l上一動點,過點P作⊙O的切線PM,切點為M,連接OM、OP,當△OPM的面積最小時,稱△OPM為直線l與⊙O的“最美三角形”.解決問題:(1)如圖1,⊙A的半徑為1,A(0,2),分別過x軸上B、O、C三點作⊙A的切線BM、OP、CQ,切點分別是M、P、Q,下列三角形中,是x軸與⊙A的“最美三角形”的是.(填序號)①ABM;②AOP;③ACQ(2)如圖2,⊙A的半徑為1,A(0,2),直線y=kx(k≠0)與⊙A的“最美三角形”的面積為,求k的值.(3)點B在x軸上,以B為圓心,為半徑畫⊙B,若直線y=x+3與⊙B的“最美三角形”的面積小于,請直接寫出圓心B的橫坐標的取值范圍.26.(10分)某市2017年對市區(qū)綠化工程投入的資金是5000萬元,為爭創(chuàng)全國文明衛(wèi)生城,加大對綠化工程的投入,2019年投入的資金是7200萬元,且從2017年到2019年,兩年間每年投入資金的年平均增長率相同.(1)求該市對市區(qū)綠化工程投入資金的年平均增長率;(2)若投入資金的年平均增長率不變,那么該市在2020年預(yù)計需投入多少萬元?
參考答案一、選擇題(每小題3分,共30分)1、B【分析】在直角三角形ACD中,根據(jù)正切的意義可求解.【題目詳解】如圖:在RtACD中,tanC.故選B.【題目點撥】本題考查了銳角三角比的意義.將角轉(zhuǎn)化到直角三角形中是解答的關(guān)鍵.2、D【題目詳解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6條線段為1.故選D.3、B【分析】根據(jù)傳播規(guī)則結(jié)合經(jīng)過兩輪轉(zhuǎn)發(fā)后共有111個人參與了宣傳活動,即可得出關(guān)于n的一元二次方程,解之取其正值即可得出結(jié)論.【題目詳解】解:依題意,得:1+n+n2=111,解得:n1=10,n2=﹣11(不合題意,舍去).故選:B.【題目點撥】本題考查了一元二次方程的應(yīng)用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.4、C【分析】根據(jù)二次函數(shù)圖像的基本性質(zhì)依次進行判斷即可.【題目詳解】①當x=0時,y=m,∴點C的坐標為(0,m),該項正確;②當m=0時,原函數(shù)解析式為:,此時對稱軸為:,且A點交于原點,∴B點坐標為:(2,0),即AB=2,∴D點坐標為:(1,1),根據(jù)勾股定理可得:BD=AD=,∴△ABD為等腰三角形,∵,∴△ABD為等腰直角三角形,該項正確;③由解析式得其對稱軸為:,利用其圖像對稱性,∴當若a=-1,則b=3,該項錯誤;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q點離對稱軸較遠,∴>,該項正確;綜上所述,①②④正確,③錯誤,故選:C.【題目點撥】本題主要考查了二次函數(shù)圖像解析式與其函數(shù)圖像的性質(zhì)綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.5、B【分析】根據(jù)勾股定理求出AB,根據(jù)余弦的定義計算即可.【題目詳解】由勾股定理得,,則,故選:B.【題目點撥】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關(guān)鍵.6、C【解題分析】試題分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵點C、A、B1在同一條直線上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋轉(zhuǎn)角等于125°.故選C.7、C【分析】根據(jù)三角形內(nèi)角和定理求出∠A=70°,根據(jù)圓周角定理解答即可.【題目詳解】解:∵∠ABC=50°,∠ACB=60°
∴∠A=70°
∵點O是△ABC的外心,
∴∠BOC=2∠A=140°,
故選:C【題目點撥】本題考查的是三角形內(nèi)角和定理、外心的定義和圓周角定理.8、D【分析】過點作x軸的垂線,垂足為M,通過條件求出,MO的長即可得到的坐標.【題目詳解】解:過點作x軸的垂線,垂足為M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐標為.故選:D.【題目點撥】本題考查坐標與圖形變化-旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.9、A【題目詳解】考點:中心對稱圖形.分析:根據(jù)中心對稱圖形的性質(zhì)得出圖形旋轉(zhuǎn)180°,與原圖形能夠完全重合的圖形是中心對稱圖形,分別判斷得出即可.解:A.旋轉(zhuǎn)180°,與原圖形能夠完全重合是中心對稱圖形;故此選項正確;B.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;C.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;D.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;故選A.10、D【解題分析】解:點M(1,﹣2)與點N關(guān)于原點對稱,點N的坐標為故選D.【題目點撥】本題考查關(guān)于原點對稱的點坐標特征:橫坐標和縱坐標都互為相反數(shù).二、填空題(每小題3分,共24分)11、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根據(jù)面積比等于相似比的平方可求出△BAC的面積,減去△ADC的面積即為△ABD的面積.【題目詳解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比則面積比∴∴故答案為:1.【題目點撥】本題考查了相似三角形的判定與性質(zhì),熟記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.12、【分析】根據(jù)分式有意義的條件是分母不為0;可得關(guān)系式x﹣1≠0,求解可得自變量x的取值范圍.【題目詳解】根據(jù)題意,有x﹣1≠0,解得:x≠1.故答案為:x≠1.【題目點撥】本題考查了分式有意義的條件.掌握分式有意義的條件是分母不等于0是解答本題的關(guān)鍵.13、【分析】根據(jù)合比性質(zhì):,可得答案.【題目詳解】由合比性質(zhì),得,
故答案為:.【題目點撥】此題考查比例的性質(zhì),利用合比性質(zhì)是解題關(guān)鍵.14、3π.【解題分析】∵圓錐的底面圓半徑是1,∴圓錐的底面圓的周長=2π,則圓錐的側(cè)面積=×2π×3=3π,故答案為3π.15、1【分析】由AD:DB=1:3,可以得到相似比為1:5,所以得到面積比為4:15,設(shè)△ADE的面積為4x,則△ABC的面積為15x,故四邊形DBCE的面積為11x,根據(jù)題意四邊形的面積為10.5,可以求出x,即可求出△ADE的面積.【題目詳解】∵DE∥BC∴,∵AD:DB=1:3∴相似比=1:5
∴面積比為4:15設(shè)△ADE的面積為4x,則△ABC的面積為15x,故四邊形DBCE的面積為11x∴11x=10.5,解得x=0.5∴△ADE的面積為:4×0.5=1故答案為:1.【題目點撥】本題主要考查了相似三角形,熟練面積比等于相似比的平方以及準確的列出方程是解決本題的關(guān)鍵.16、【解題分析】試題解析:∵把A(,y1),B(2,y2)代入反比例函數(shù)y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三邊關(guān)系定理得:|AP-BP|<AB,∴延長AB交x軸于P′,當P在P′點時,PA-PB=AB,即此時線段AP與線段BP之差達到最大,設(shè)直線AB的解析式是y=ax+b(a≠0)把A、B的坐標代入得:,解得:,∴直線AB的解析式是y=-x+,當y=0時,x=,即P(,0);故答案為(,0).17、【分析】根據(jù)正六邊形被它的半徑分成六個全等的等邊三角形,再根據(jù)等邊三角形的邊長,求出等邊三角形的高,再根據(jù)面積公式即可得出答案.【題目詳解】解:連接、,作于,等邊三角形的邊長是2,,等邊三角形的面積是,正六邊形的面積是:;故答案為:.【題目點撥】本題考查的是正多邊形和圓的知識,解題的關(guān)鍵要記住正六邊形的特點,它被半徑分成六個全等的等邊三角形.18、1.【解題分析】∵,由勾股定理逆定理可知此三角形為直角三角形,∴它的內(nèi)切圓半徑,三、解答題(共66分)19、(1)證明見解析;(2).【分析】(1)由垂直的定義,得到,由同角的余角相等,得到,即可得到結(jié)論成立;(2)由(1)可知,得到,即可求出BD.【題目詳解】(1)證明:∵是的直徑,∴.∵,∴.∵,∴.∵,,∴.(2)解:由(1)得,∴,即,∴.【題目點撥】本題考查了圓周角定理,相似三角形的判定和性質(zhì),同角的余角相等,解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題.20、(1)1,3,1;(2)(0,1),(1,3),1【分析】(1)由于已知一次函數(shù)y1=-x+a和反比例函數(shù)交于A、B兩點,且點A的坐標是(1,3),把A的坐標代入反比例函數(shù)解析式中即可確定k的值,然后利用解析式即可確定點B的坐標,最后利用A或B坐標即可確定a的值;
(2)利用(1)中求出的直線的解析式可以確定C,D的坐標,然后利用面積的割補法可以求出△AOB的面積.【題目詳解】解:(1)∵反比例函數(shù)經(jīng)過A、B兩點,且點A的坐標是(1,3),∴3=,∴k=3,而點B的坐標是(3,m),∴m==1,∵一次函數(shù)y1=﹣x+a經(jīng)過A點,且點A的坐標是(1,3),∴3=﹣1+a,∴a=1.(2)∵y1=﹣x+1,當x=0時,y=1,當y=0時,x=1,∴C的坐標為(0,1),D的坐標為(1,0),∴S△AOB=S△COB﹣S△COA=×1×3﹣×1×1=1.【題目點撥】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和函數(shù)圖象中的面積問題,求面積體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解圖形幾何意義.21、(1)b=-2,c=3;(2)當y>0時,﹣3<x<1.【分析】(1)由題意求得b、c的值;
(2)當y>0時,即圖象在第一、二象限的部分,再求出拋物線和x軸的兩個交點坐標,即得x的取值范圍;【題目詳解】(1)根據(jù)題意,將(1,0)、(0,3)代入,得:解得:(2)由(1)知拋物線的解析式為當y=0時,解得:或x=1,則拋物線與x軸的交點為∴當y>0時,﹣3<x<1.【題目點撥】考查待定系數(shù)法求二次函數(shù)解析式,拋物線與x軸的交點,二次函數(shù)的性質(zhì),數(shù)形結(jié)合是解題的關(guān)鍵.22、(1)EF與⊙O相切,理由見解析;(2)證明見解析.【分析】(1)連接OC,由題意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切線;(2)連接BC,根據(jù)直徑所對圓周角是直角證得△ACF∽△ABC,即可證得結(jié)論.【題目詳解】(1)EF與⊙O相切,理由如下:如圖,連接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切線;(2)連接BC,∵AB為直徑,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【題目點撥】本題考查了直線與圓的位置關(guān)系,切線的判定和性質(zhì),圓周角定理,相似三角形的判定和性質(zhì),熟練運用切線的判定和性質(zhì)是本題的關(guān)鍵.23、(1)m≤;(1)m=【分析】(1)若一元二次方程有兩個實數(shù)根,則根的判別式△=b1-4ac≥0,建立關(guān)于m的不等式,可求出m的取值范圍;
(1)根據(jù)根與系數(shù)的關(guān)系可得出x1+x1的表達式,進而可得出y、m的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)及(1)題得出的自變量的取值范圍,即可求出y有最小值時及對應(yīng)的m值.【題目詳解】解:(1)將原方程整理為x1+1(m-1)x+m1=0;∵原方程有兩個實數(shù)根,∴△=〔1(m-1)〕1-4m1=-8m+4≥0,∴m≤(1)∵x1,x1為方程的兩根,∴y=x1+x1=-1m+1,∵-1<0∴y隨m的增大而減小∵m≤∴當m=時,y有最小值.【題目點撥】此題是根的判別式、根與系數(shù)的關(guān)系與一次函數(shù)的結(jié)合題.牢記一次函數(shù)的性質(zhì)是解答(1)題的關(guān)鍵.24、(1)證明見解析;(2)6﹣.【分析】(1)連接OE.根據(jù)OB=OE得到∠OBE=∠OEB,然后再根據(jù)BE是△ABC的角平分線得到∠OEB=∠EBC,從而判定OE∥BC,最后根據(jù)∠C=90°得到∠AEO=∠C=90°證得結(jié)論AC是⊙O的切線.(2)連接OF,利用S陰影部分=S梯形OECF?S扇形EOF求解即可.【題目詳解】(1)連接OE.∵OB=OE∴∠OBE=∠OEB∵BE是△ABC的角平分線∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°又∵OE為半徑∴AC是圓O的切線(2)連接OF.∵圓O的半徑為4,∠A=30°
,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6
AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF=∴S陰影部分=S梯形OECF﹣S扇形EOF=6﹣.【題目點撥】本題考查了切線的判定與性質(zhì)及扇形面積的計算,解題的關(guān)鍵是連接圓心和切點,利用過切點且垂直于過切點的半徑來判定切線.25、(1)②;(2)±1;(3)<<或<<【分析】(1)本題先利用切線的性質(zhì),結(jié)合勾股定理以及三角形面積公式將面積最值轉(zhuǎn)化為線段最值,了解最美三角形的定義,根據(jù)圓心到直線距離最短原則解答本題.(2)本題根據(jù)k的正負分類討論,作圖后根據(jù)最美三角形的定義求解EF,利用勾股定理求解AF,進一步確定∠AOF度數(shù),最后利用勾股定理確定點F的坐標,利用待定系數(shù)法求k.(3)本題根據(jù)⊙B在直線兩側(cè)不同位置分類討論,利用直線與坐標軸的交點坐標確定∠NDB的度數(shù),繼而按照最美三角形的定義,分別以△BND,△BMN為媒介計算BD長度,最后與OD相減求解點B的橫坐標范圍.【題目詳解】(1)如下圖所示:∵PM是⊙O的切線,∴∠PMO=90°,當⊙O的半徑OM是定值時,,∵,∴要使面積最小,則PM最小,即OP最小即可,當OP⊥時,OP最小,符合最美三角形定義.故在圖1三個三角形中,因為AO⊥x軸,故△AOP為⊙A與x軸的最美三角形.故選:②.(2)①當k<0時,按題意要求作圖并在此基礎(chǔ)作FM⊥x軸,如下所示:按題意可得:△AEF是直線y=kx與⊙A的最美三角形,故△AEF為直角三角形且AF⊥OF.則由已知可得:,故EF=1.在△AEF中,根據(jù)勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 茶藝館租賃協(xié)議模板范本
- 家電下鄉(xiāng)項目評標報告范本
- 木材加工廠建設(shè)合同
- 建筑工程意向合同
- 服裝公司會計勞動合同樣本
- 地鐵建設(shè)延期協(xié)議
- 2025屆山東省棗莊十八中高三物理第一學(xué)期期末聯(lián)考模擬試題含解析
- 2025屆湖北省孝感高中物理高一上期末復(fù)習檢測試題含解析
- 2025屆遂寧市重點中學(xué)物理高二第一學(xué)期期末聯(lián)考模擬試題含解析
- 吉林省榆樹市一中2025屆高二物理第一學(xué)期期中檢測模擬試題含解析
- 關(guān)注護士職業(yè)心理健康
- 普速鐵路接觸網(wǎng)運行維修規(guī)則
- 2024年遼寧盤錦北方瀝青股份有限公司招聘筆試參考題庫附帶答案詳解
- 《護理服務(wù)規(guī)范》
- 數(shù)字化健康管理與醫(yī)療服務(wù)
- 體育學(xué)科數(shù)字化教學(xué)設(shè)計方案
- AI在藥物研發(fā)中的應(yīng)用
- 智能云運維管理解決方案
- CAD培訓(xùn)課件(基礎(chǔ)教程)
- 下肢皮膚感染健康宣教
- 酒店安全培訓(xùn)課件
評論
0/150
提交評論