2024屆江蘇省宜興市桃溪中學數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第1頁
2024屆江蘇省宜興市桃溪中學數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第2頁
2024屆江蘇省宜興市桃溪中學數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第3頁
2024屆江蘇省宜興市桃溪中學數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第4頁
2024屆江蘇省宜興市桃溪中學數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省宜興市桃溪中學數(shù)學九年級第一學期期末聯(lián)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,在□ABCD中,∠B=60°,AB=4,對角線AC⊥AB,則□ABCD的面積為A.6 B.12 C.12 D.162.如圖,正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點.AB⊥x軸于B,CD⊥x軸于D,當四邊形ABCD的面積為6時,則k的值是()A.6 B.3 C.2 D.3.若反比例函數(shù)圖象上有兩個點,設,則不經(jīng)過第()象限.A.一 B.二 C.三 D.四4.如圖,在?ABCD中,若∠A+∠C=130°,則∠D的大小為()A.100° B.105° C.110° D.115°5.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(),交于點,交于點,則的值為()A. B. C. D.6.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(

)A.35° B.45° C.55° D.65°7.如圖,在5×6的方格紙中,畫有格點△EFG,下列選項中的格點,與E,G兩點構成的三角形中和△EFG相似的是()A.點A B.點B C.點C D.點D8.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm9.如圖1,在菱形ABCD中,∠A=120°,點E是BC邊的中點,點P是對角線BD上一動點,設PD的長度為x,PE與PC的長度和為y,圖2是y關于x的函數(shù)圖象,其中H是圖象上的最低點,則a+b的值為()A.7 B. C. D.10.如圖,在平面直角坐標系中,直線分別交軸,軸于兩點,已知點的坐標為,若為線段的中點,連接,且,則的值是()A.12 B.6 C.8 D.411.已知如圖,則下列4個三角形中,與相似的是()A. B.C. D.12.若點A(1,y1)、B(2,y2)都在反比例函數(shù)的圖象上,則y1、y2的大小關系為A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y2二、填空題(每題4分,共24分)13.小芳的房間有一面積為3

m2的玻璃窗,她站在室內(nèi)離窗子4

m的地方向外看,她能看到窗前面一幢樓房的面積有____m2(樓之間的距離為20

m).14.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.15.如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2=(x﹣3)2+n交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結論:①兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③當x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結論是________(填寫正確結論的序號).16.如圖,∠XOY=45°,一把直角三角尺△ABC的兩個頂點A、B分別在OX,OY上移動,其中AB=10,那么點O到頂點A的距離的最大值為_____.17.已知一個圓錐底面圓的半徑為6cm,高為8cm,則圓錐的側面積為_____cm1.(結果保留π)18.如圖,四邊形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,則線段BF=______.三、解答題(共78分)19.(8分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是的中點,連接AE交BC于點F,∠ACB=2∠EAB.(1)求證:AC是⊙O的切線;(2)若,,求BF的長.20.(8分)解方程:x+3=x(x+3)21.(8分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.(1)求此拋物線的解析式;(2)已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;(3)在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.22.(10分)在△ABC中,AD、CE分別是△ABC的兩條高,且AD、CE相交于點O,試找出圖中相似的三角形,并選出一組給出證明過程.23.(10分)如圖,已知拋物線與軸交于、兩點,,交軸于點,對稱軸是直線.(1)求拋物線的解析式及點的坐標;(2)連接,是線段上一點,關于直線的對稱點正好落在上,求點的坐標;(3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過作軸的垂線交拋物線于點,交線段于點.設運動時間為()秒.若與相似,請求出的值.24.(10分)先化簡再求值:其中.25.(12分)如圖,拋物線()與雙曲線相交于點、,已知點坐標,點在第三象限內(nèi),且的面積為3(為坐標原點).(1)求實數(shù)、、的值;(2)在該拋物線的對稱軸上是否存在點使得為等腰三角形?若存在請求出所有的點的坐標,若不存在請說明理由.(3)在坐標系內(nèi)有一個點,恰使得,現(xiàn)要求在軸上找出點使得的周長最小,請求出的坐標和周長的最小值.26.如圖,是的平分線,點在上,以為直徑的交于點,過點作的垂線,垂足為點,交于點.(1)求證:直線是的切線;(2)若的半徑為,,求的長.

參考答案一、選擇題(每題4分,共48分)1、D【分析】利用三角函數(shù)的定義求出AC,再求出△ABC的面積,故可得到□ABCD的面積.【題目詳解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面積=2S△ABC=16故選D.【題目點撥】此題主要考查三角函數(shù)的應用,解題的關鍵是熟知正切的定義及平行四邊形的性質(zhì).2、B【分析】根據(jù)反比例函數(shù)的對稱性可知:OB=OD,AB=CD,再由反比例函數(shù)y=中k的幾何意義,即可得到結論.【題目詳解】解:∵正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點,AB⊥x軸于B,CD⊥x軸于D,∴AB=OB=OD=CD,∴四邊形ABCD是平行四邊形,∴k=2S△AOB=2×=3,故選:B.【題目點撥】本題考查反比例函數(shù)與正比例函數(shù)的結合題型,關鍵在于熟悉反比例函數(shù)k值的幾何意義.3、C【分析】利用反比例函數(shù)的性質(zhì)判斷出m的正負,再根據(jù)一次函數(shù)的性質(zhì)即可判斷.【題目詳解】解:∵,∴a-1>0,∴圖象在三象限,且y隨x的增大而減小,∵圖象上有兩個點(x1,y1),(x2,y2),x1與y1同負,x2與y2同負,∴m=(x1-x2)(y1-y2)<0,∴y=mx-m的圖象經(jīng)過一,二、四象限,不經(jīng)過三象限,故選:C.【題目點撥】本題考查反比例函數(shù)的性質(zhì),一次函數(shù)的性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.4、D【解題分析】根據(jù)平行四邊形對角相等,鄰角互補即可求解.【題目詳解】解:在?ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故選D.【題目點撥】本題考查了平行四邊形的性質(zhì),屬于簡單題,熟悉平行四邊形的性質(zhì)是解題關鍵.5、C【解題分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【題目詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【題目點撥】本題考查了旋轉的性質(zhì):對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).6、C【解題分析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.7、D【分析】根據(jù)網(wǎng)格圖形可得所給△EFG是兩直角邊分別為1,2的直角三角形,然后利用相似三角形的判定方法選擇答案即可.【題目詳解】解:觀察圖形可得△EFG中,直角邊的比為,觀各選項,,只有D選項三角形符合,與所給圖形的三角形相似.故選:D.【題目點撥】本題考查了相似三角形的判定,勾股定理的應用,熟練掌握網(wǎng)格結構,觀察出所給圖形的直角三角形的特點是解題的關鍵.8、B【解題分析】首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【題目詳解】解:如圖,連接OC,AO,

∵大圓的一條弦AB與小圓相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的長==4π,

故選B.【題目點撥】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關鍵.9、C【分析】由A、C關于BD對稱,推出PA=PC,推出PC+PE=PA+PE,推出當A、P、E共線時,PE+PC的值最小,觀察圖象可知,當點P與B重合時,PE+PC=6,推出BE=CE=2,AB=BC=4,分別求出PE+PC的最小值,PD的長即可解決問題.【題目詳解】解:∵在菱形ABCD中,∠A=120°,點E是BC邊的中點,∴易證AE⊥BC,∵A、C關于BD對稱,∴PA=PC,∴PC+PE=PA+PE,∴當A、P、E共線時,PE+PC的值最小,即AE的長.觀察圖象可知,當點P與B重合時,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值為,∴點H的縱坐標a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴點H的橫坐標b=,∴a+b=;故選C.【題目點撥】本題考查動點問題的函數(shù)圖象,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.10、A【分析】根據(jù)“一線三等角”,通過構造相似三角形,對m的取值進行分析討論即可求出m的值.【題目詳解】由已知得,∴.如圖,在軸負半軸上截取,可得是等腰直角三角形,∴.又∵,∴,∴,∴,即,解得(舍去)或,的值是12.【題目點撥】本題考查了相似三角形的判定與性質(zhì)的知識點,解題時還需注意分類討論的數(shù)學思想的應用11、C【分析】根據(jù)相似三角形的判定定理逐一分析即可.【題目詳解】解:∵AB=AC=6,∠B=75°∴∠B=∠C=75°∴∠A=180°-∠B-∠C=30°,對于A選項,如下圖所示∵,但∠A≠∠E∴與△EFD不相似,故本選項不符合題意;對于B選項,如下圖所示∵DE=DF=EF∴△DEF是等邊三角形∴∠E=60°∴,但∠A≠∠E∴與△EFD不相似,故本選項不符合題意;對于C選項,如下圖所示∵,∠A=∠E=30°∴∽△EFD,故本選項符合題意;對于D選項,如下圖所示∵,但∠A≠∠D∴與△DEF不相似,故本選項不符合題意;故選C.【題目點撥】此題考查的是相似三角形的判定,掌握有兩組對應邊對應成比例,且夾角相等的兩個三角形相似是解決此題的關鍵.12、C【解題分析】根據(jù)反比例函數(shù)圖象的增減性進行判斷:根據(jù)反比例函數(shù)的性質(zhì):當時,圖象分別位于第一、三象限,在每個象限內(nèi),y隨x的增大而減小;當時,圖象分別位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大.∵反比例函數(shù)的解析式中的,∴點A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故選C.二、填空題(每題4分,共24分)13、108【解題分析】考點:平行投影;相似三角形的應用.分析:在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,依此進行分析.解答:解:根據(jù)題意:她能看到窗前面一幢樓房的圖形與玻璃窗的外形應該相似,且相似比為=6,故面積的比為36;故她能看到窗前面一幢樓房的面積有36×3=108m1.點評:本題考查了平行投影、視點、視線、位似變換、相似三角形對應高的比等于相似比等知識點.注意平行投影特點:在同一時刻,不同物體的物高和影長成比例14、1【分析】利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【題目詳解】∵-=-=1,∴x=1.故答案為1【題目點撥】本題考查二次函數(shù)基本性質(zhì)中的對稱軸公式;也可用配方法解決.15、①③④【分析】根據(jù)題意分別求出兩個二次函數(shù)的解析式,根據(jù)函數(shù)的對稱軸判定①;令x=0,求出y2的值,比較判定②;觀察圖象,判定③;令y=3,求出A、B、C的橫坐標,然后求出AB、AC的長,判定④.【題目詳解】∵拋物線y1=a(x+2)2+m與拋物線y2=(x﹣3)2+n的對稱軸分別為x=-2,x=3,∴兩條拋物線的對稱軸距離為5,故①正確;∵拋物線y2=(x﹣3)2+n交于點A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②錯誤;由圖象可知,當x>3時,y1>y2,∴x>3時,y1﹣y2>0,③正確;∵拋物線y1=a(x+2)2+m過原點和點A(1,3),∴,解得,∴.令y1=3,則,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,則(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y軸是線段BC的中垂線,故④正確.故答案為①③④.【題目點撥】本題考查了二次函數(shù)的性質(zhì),主要利用了待定系數(shù)法求二次函數(shù)解析式,已知函數(shù)值求自變量的值.16、10【分析】當∠ABO=90°時,點O到頂點A的距離的最大,則△ABC是等腰直角三角形,據(jù)此即可求解.【題目詳解】解:∵∴當∠ABO=90°時,點O到頂點A的距離最大.

則OA=AB=10.

故答案是:10.【題目點撥】本題主要考查了等腰直角三角形的性質(zhì),正確確定點O到頂點A的距離的最大的條件是解題關鍵.17、60π【解題分析】試題分析:先根據(jù)勾股定理求得圓錐的母線長,再根據(jù)圓錐的側面積公式求解即可.由題意得圓錐的母線長∴圓錐的側面積.考點:勾股定理,圓錐的側面積點評:解題的關鍵是熟練掌握圓錐的側面積公式:圓錐的側面積底面半徑×母線.18、【分析】連接,延長BA,CD交于點,根據(jù)∠BAD=∠BCD=90°可得點A、B、C、D四點共圓,根據(jù)圓周角定理可得,根據(jù)DE⊥AC可證明△AED∽△BCD,可得,利用勾股定理可求出AD的長,由∠ABC=45°可得△ABG為等腰直角三角形,進而可得△ADG是等腰直角三角形,即可求出AG、DG的長,根據(jù)BC=2CD可求出CD、BC、AB的長,根據(jù),可證明△AED∽△FAD,根據(jù)相似三角形的性質(zhì)可求出AF的長,即可求出BF的長.【題目詳解】連接,延長BA,CD交于點,∵,∴四點共圓,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.【題目點撥】本題考查圓周角定理、勾股定理及相似三角形的判定與性質(zhì),如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;如果兩個三角形的兩組對應邊的比相等,并且對應的夾角相等,那么這兩個三角形相似;如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.三、解答題(共78分)19、(1)證明見解析;(2).【分析】(1)連接AD,如圖,根據(jù)圓周角定理,再根據(jù)切線的判定定理得到AC是⊙O的切線;(2)作F做FH⊥AB于點H,利用余弦定義,再根據(jù)三角函數(shù)定義求解即可【題目詳解】(1)證明:如圖,連接AD.∵E是中點,∴.∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直徑.∴∠ADB=∠ADC=90°.∴∠C+∠CAD=90°.∴∠BAD+∠CAD=90°.即BA⊥AC∴AC是⊙O的切線.(2)解:如圖②,過點F做FH⊥AB于點H.∵AD⊥BD,∠DAE=∠EAB,∴FH=FD,且FH∥AC.在Rt△ADC中,∵,,∴CD=1.同理,在Rt△BAC中,可求得BC=.∴BD=.設DF=x,則FH=x,BF=-x.∵FH∥AC,∴∠BFH=∠C.∴.即.解得x=2.∴BF=.【題目點撥】本題考查了解直角三角形的應用和切線的判定,經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.連接半徑在證明垂直即可20、x1=1,x2=﹣1【分析】先利用乘法分配律將括號外面的分配到括號里面,再通過移項化成一元二次方程的標準形式,利用提取公因式即可得出結果.【題目詳解】解:方程移項得:(x+1)﹣x(x+1)=0,分解因式得:(x+1)(1﹣x)=0,解得:x1=1,x2=﹣1.【題目點撥】本題主要考查的是一元二次方程的解法,一元二次方程的解法主要包括:提取公因式,公式法,十字相乘等.21、(1)(2)(0,-1)(3)(1,0)(9,0)【解題分析】(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關于直線BC對稱的點D'的坐標;(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【題目詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標為(9,0),綜上所述,滿足條件的點P坐標為(1,0)或(9,0).【題目點撥】本題考查了二次函數(shù)的綜合運用.關鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點的坐標,學會分類討論,不能漏解.22、△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA,證明見解析【分析】由題意直接根據(jù)相似三角形的判定方法進行分析即可得出答案.【題目詳解】解:圖中相似的三角形有:△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA.∵AD、CE分別是△ABC的兩條高,∴∠ADB=∠CDA=∠CEB=∠AEC=90°,∴∠B+∠BCE=90°,∠B+∠BAD=90°,∴∠BAD=∠BCE,∵∠EBC=∠ABD,∴△ABD∽CBE.【題目點撥】本題考查相似三角形的判定.注意掌握相似三角形的判定以及數(shù)形結合思想的應用.23、(1),點坐標為;(2)F;(3)【分析】(1)先求出點A,B的坐標,將A、B的坐標代入中,即可求解;

(2)確定直線BC的解析式為y=?x+3,根據(jù)點E、F關于直線x=1對稱,即可求解;

(3)若與相似,則或,即可求解;【題目詳解】解:(1)∵點、關于直線對稱,,∴,.代入中,得:,解,∴拋物線的解析式為.∴點坐標為;(2)設直線的解析式為,則有:,解得,∴直線的解析式為.∵點、關于直線對稱,又到對稱軸的距離為1,∴.∴點的橫坐標為2,將代入中,得:,∴F(2,1);(3)秒時,.如圖當時∴,∴,.①若,則,即(舍去),或.②若,則,即(舍去),或(舍去)∴.【題目點撥】主要考查了二次函數(shù)的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數(shù)形結合的思想把代數(shù)和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.24、【解題分析】先將多項式進行因式分解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論