![全稱量詞與存在量詞_第1頁(yè)](http://file4.renrendoc.com/view/a80696f396aac54d230359e96f9a9160/a80696f396aac54d230359e96f9a91601.gif)
![全稱量詞與存在量詞_第2頁(yè)](http://file4.renrendoc.com/view/a80696f396aac54d230359e96f9a9160/a80696f396aac54d230359e96f9a91602.gif)
![全稱量詞與存在量詞_第3頁(yè)](http://file4.renrendoc.com/view/a80696f396aac54d230359e96f9a9160/a80696f396aac54d230359e96f9a91603.gif)
![全稱量詞與存在量詞_第4頁(yè)](http://file4.renrendoc.com/view/a80696f396aac54d230359e96f9a9160/a80696f396aac54d230359e96f9a91604.gif)
![全稱量詞與存在量詞_第5頁(yè)](http://file4.renrendoc.com/view/a80696f396aac54d230359e96f9a9160/a80696f396aac54d230359e96f9a91605.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
14全稱量詞與存在量詞
(一)思考下列語(yǔ)句是命題嗎?⑴與⑶,⑵與⑷之間有什么關(guān)系?⑴>3;⑵21是整數(shù);⑶對(duì)所有的∈R,>3;⑷對(duì)任意一個(gè)∈,21是整數(shù)全稱量詞與全稱命題短語(yǔ)“所有的”“任意一個(gè)”在邏輯中通常叫做全稱量詞,用符號(hào)“
”表示。含有全稱量詞的命題,叫做全稱命題1、全稱量詞與全稱命題常見的全稱量詞:“對(duì)一切”、“對(duì)每一個(gè)”、“任給”、“所有的”、“任意”、“每一個(gè)”、“全部”等如:(5)對(duì)所有的∈R,>3;可簡(jiǎn)記為:∈R,>3;(6)對(duì)任意一個(gè)∈,2+1是整數(shù)??珊?jiǎn)記為:∈,2+1∈2、符號(hào)語(yǔ)言表述全稱命題全稱命題:“對(duì)M中任意一個(gè),有,,有p成立”解:(1)假命題;(2)真命題;(3)假命題例1判斷下列命題的真假(1)所有的素?cái)?shù)都是奇數(shù)(2)∈R,21≥0(3)對(duì)每一個(gè)無(wú)理數(shù),2也是無(wú)理數(shù)小結(jié):判斷全稱命題是真命題的方法判斷全稱命題“∈M,p”是假命題的方法——需要對(duì)集合M中每個(gè)元素,證明p成立——只需在集合M中找到一個(gè)元素0,使得p0不成立即可(舉反例)全稱量詞與全稱命題反例否定思考下列語(yǔ)句是命題嗎?⑴與⑶,⑵與⑷之間有什么關(guān)系?⑴21=3;⑵能被2和3整除;⑶存在一個(gè)0∈R,使201=3;⑷至少有一個(gè)0∈,0能被2和3整除存在量詞與特稱命題短語(yǔ)“存在一個(gè)”“至少有一個(gè)”在邏輯中通常叫做存在量詞。含有存在量詞的命題,叫做特稱命題。1、存在量詞與特稱命題常見的存在量詞:“有些”、“有一個(gè)”、“有的”,“對(duì)某個(gè)”等如:存在實(shí)數(shù),滿足;可簡(jiǎn)記為:2、符號(hào)語(yǔ)言表述特稱命題“存在M中元素0,使p0成立”可用符號(hào)簡(jiǎn)記為讀作“存在M中的元素0,使p0成立”特稱命題:0∈M,p0例2判斷下列特稱命題的真假(1)有一個(gè)實(shí)數(shù)0,使02203=0;(2)存在兩個(gè)相交平面垂直于同一條直線;(3)有些整數(shù)只有兩個(gè)正因數(shù)——需要證明集合M中,使p成立的元素不存在——只需在集合M中找到一個(gè)元素0,使得p0成立即可舉例說(shuō)明小結(jié):判斷特稱命題是真命題的方法
判斷特稱命題是假命題的方法特例肯定1指出下列命題是全稱命題還是特稱命題并判斷它們的真假(1)所有的拋物線與軸都有兩個(gè)交點(diǎn);(2)存在函數(shù)既是奇函數(shù)又是偶函數(shù);(3)每個(gè)矩形的對(duì)角線都相等;(4)至少有一個(gè)銳角a,可使sina=0;全稱,假特稱,真全稱,真特稱,假鞏固練習(xí)2試用文字語(yǔ)言的形式表達(dá)下列命題,并判斷真假(1)(2)(3)(4)特稱,真全稱,假全稱,假特稱,真1(2010湖南文數(shù))下列命題中的假命題是()ABCD2(2009遼寧)下列四個(gè)命題:;
;其中真命題是()ABCD感受高考CD同一個(gè)全稱命題或特稱命題,由于自然語(yǔ)言的不同,可以有不同的表述方法,在應(yīng)用中可以靈活選擇。命題全稱命題特稱命題表述方法(1)所有的,使成立;(2)對(duì)一切,使成立;(3)對(duì)每一個(gè),使成立;(4)任意一個(gè),使成立;(5)若,則成立;(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)保安雇傭合同范例
- 二手商務(wù)車買賣合同范例
- 水下打撈團(tuán)隊(duì)施工方案
- 冠名合同范例
- 農(nóng)場(chǎng)經(jīng)營(yíng)合作合同范例
- 鄉(xiāng)村別墅代工合同范例
- 輕質(zhì)土路堤專項(xiàng)施工方案
- 農(nóng)村門臉出售合同范本
- 和做生意合同范本
- 醫(yī)療設(shè)備承包維護(hù)合同范本
- 王崧舟:學(xué)習(xí)任務(wù)群與課堂教學(xué)變革 2022版新課程標(biāo)準(zhǔn)解讀解析資料 57
- 招投標(biāo)現(xiàn)場(chǎng)項(xiàng)目經(jīng)理答辯(完整版)資料
- 運(yùn)動(dòng)競(jìng)賽學(xué)課件
- 重大事故隱患整改臺(tái)賬
- 2022年上海市初中畢業(yè)數(shù)學(xué)課程終結(jié)性評(píng)價(jià)指南
- DB15T 2058-2021 分梳綿羊毛標(biāo)準(zhǔn)
- 高考作文備考-議論文對(duì)比論證 課件14張
- 新華師大版七年級(jí)下冊(cè)初中數(shù)學(xué) 7.4 實(shí)踐與探索課時(shí)練(課后作業(yè)設(shè)計(jì))
- 山東省萊陽(yáng)市望嵐口礦區(qū)頁(yè)巖礦
- 《普通生物學(xué)教案》word版
- 安全生產(chǎn)應(yīng)知應(yīng)會(huì)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論