混凝土結(jié)構(gòu)理論英文crack_第1頁
混凝土結(jié)構(gòu)理論英文crack_第2頁
混凝土結(jié)構(gòu)理論英文crack_第3頁
混凝土結(jié)構(gòu)理論英文crack_第4頁
混凝土結(jié)構(gòu)理論英文crack_第5頁
已閱讀5頁,還剩63頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Whyshouldweensuretheextentofcrackingandthedeflectionatserviceloadliewithintheacceptablemagnitude?Howmuchistheallowablevalueofdeflection?Howmuchistheallowablevalueofcrackwidth?Whydoweusuallydonotcheckthecrackwidth?Limitstatesofthethecrackwidth

of

notexceedthespecifiedlimitslimitstateControlbymainlybyCanmeetthelimitstateControlbymainlyby 5Mlf 384 48Controlof(1)Definitionof 5Mlf Forelasticsimply-support 384 48Thevalue5/48changesindifferentloadtypes.Inspecializedloadtypes,itisaconstant.Forelasticmaterial,qandfislinear.ButforRCmember,itisdifferent,therigiditywillchange.Threestages:Aftercrackofconcrete,rigiditydecreases,plasticAftersteelbaryielded,rigiditydecreasesmoreControlof(2)CalculationofThecalculationoftheshort-termrigidityBsaftercracking.Strainfeature:1)theaveragecurvatureinpuremomentThetensilestrainofsteelandcompressivestrainofconcreteisuneven,maximumincrackposition,andchangingbetween2.ControlofThedepthoftheneutralaxisisthenfluctuatingaroundanaveragevaluePlanesectionassumptionisstilleffectiveinoverallControlofStrainofsteelandconcreteincrackingInthisstage,therelationshipbetweenthestressandthemomentcanbecalculatedthroughforcebalanceequation(similartothebalanceequationsinultimatestatus,exceptthattheconcretestrainshapeisdifferent,sothepreviousformularcan’tbedirectlyused)A0B A0 E 2ControlofRelationbetweenaveragestrainofwholememberandstrainbetweencracksNon-uniformcoefficientA0B A0 E cx h[bh(b' (b' Ms f EABs 6 ffEA 0

E E0.87

EAh2EA EABs 6 ffEA 0

E E0.87

EAh2EA E

EEA E

1 Es/EcAs/ (

EAh2('E 1 EAh2(')E Mh0EAhh

()E Mxsc s s x 0.87;1.10.65ftk,在0.4~1.0

6 ;te 0.2 ff

13.5

EAB 6 ff2.Controlof 1.10.65 ;Between0.4~M

E

6E

0.87hA;te

Bs

2EsAs0EsA ffb(df)LongLongtermandshortterm①Differentkindofload:Deadloadandlive②"quasi-permanentvalue"ofthevariableloadisusedtoevaluateitslong-termeffectonthestructure(ψq),ψqisdeterminedbythedegreeofpermanencyofavariableloadagainsttheexpectedlifespanofthestructureanddiffersindifferentvariableloads.Forinstance,thevalueforlifeloadonfloorslabsinofficeorresidencebuildingsis0.4.①Longtermload:Deadload+quasi‐permanentlive→quasi-permanent②Shorttermload:Deadload+characteristiclive1)BM(M1) 2.00.4Thisformulaisforshort-termrigidity,Sincethedeflectionofconcretetendstoincreasewithtimeundersustainedloadcausedcreepandshrinkage,thelong‐termsectionrigidityBshouldbereducedwithtime.1)BM(M1) 2.00.4Ml M)l Mlf q

kB1)BM(M1) 2.00.4TheprincipleofleastForasimplificationforthecalculationofthedeflectionofthebeamswithvariablesectionrigidity,theCodespecifiesthatforasegmentofthemember,therigiditycalculatedforthesectionundertheabsolutemaximummomentinthatsegment(whichisalsotheminimumrigiditysection)istakenastheuniformrigidityofthatsegment.Whenthereexistoppositesignmoment,choosetheleastrigidityin|Mmax|positiontocalculatethe2.ControlofSeveralproblemstoberigidityisrelatedwithsteelratioisrelatedtoCapacityanddeflection:sometimesthesteelbarsareaaredeterminedbythedeflectionrequirement.FlangewillincreaseThegradeofconcretehavenotmucheffectonTheeffectivedepthofsectionhasthemaximumeffectontheincreaseofrigidity.2.ControlofSpan-depthratiohasalargeeffecttoFornormalload,crackcheckingmaybeignoredwhenthespan-depthratioisbetween10and20.Thereasonfordeflectiondailynon-structuralmemberbadcausesomeotherbadSomereasonsforwhyshouldwecontrolthedeflectionorcrackHaveinfluenceonfunctionofBridgeprecise

Haveanadverseeffectonthestructuralmember.Suchaschangingthesupportconditions,producingunstable,crackorvibrationproblems

ThechangingofsupportwillEndangerthesafetyofthewall

Crackingofbrick FallingoffoftheCrushingofbrick FeelingPa),混凝土保護(hù)層厚度20mm,Example8-1】Thefigureshowsacantileverslabofanentranceunderuniformlydistributedloads.Characteristicvalueofliveloadanddeadloadonfloorpk=0.5kN/mandgk=8kN/m,respectively(coefficientofquasi-permanentψq=1.0).ThelongitudinalreinforcementsareofgradeHRB335withadiameterof16mmandaspacingof200mm(Es=2×105MPa).TheconcreteisofgradeC30(ftk=2.01MPa,Ec=3×104MPa),thicknessofconcretecoverc=20mm.Find:whetherthemaximumdeflectionofslabcanmeettherequirementofcode. 1gpl2180.53238.25kN 1gpl2181.00.532 由題知As1005mm2b1000mm,h020020162

0.51000

【Solution1mstripofFindthecharacteristicvalueof 1gpl2180.53238.25kN Longterm Findnon-uniformlydistributedstraincoefficientoflongitudinaltensilereinforcementψgivenAs1005mm2,b1000mm,h02002016/2

0.51000

Mq0.87h

0.87172

1.10.65

1.1 0.652.010.01005254.34

=0589E

2s s

EA

B s

0.26E 2105 5.35210N1.150.5890.266.67 B M(-1)

38.251062-1 5.3522.6761012Nmm2Mlf k

38.25106 4

Fidlong-termrigidity B M(-1)

38.251062-1 5.3522.6761012Nmm2FindthemaximumdeflectionfofMlf k

38.25106 4

Can’tmeetDiscuss:Thekeytocheckthedeformationofmembersunderflexureistofindlong-termrigidityB.EIinthedeflectionformulainmechanicsofmaterialsshallbereplacedbyBindeformationcalculationofmembers.Whenamemberisloadedtoitscrackingload,atthemomentwhencrackisimpending,theconcretetensilestresswillbeftk.Thenfirstcrackmayappearstochasticallyonaweaksection.Themomentthatcrackappears,thetensilestressintheconcretewillbereleasedatthecrackedsection,andthesteelstressatthecrackedsectionwillbesuddenlyincreased.However,tensilestressoftheconcreteincreasesfromthecrackedsection,becausetensionistransferredfromthesteeltotheconcretebybond.WhenthetensilestressincreasesuptothevalueofthetensilestrengthofconcreteatsectionB.anewcrackwillappear.3.Crackwidthσc=ft,σs=σs1=Ncr/As;Ncrσs2As=ftAte=lminτmπdlmin=ftAte/(τmπd)=dft/(4ρteτm);其中根據(jù)裂縫間距的統(tǒng)計(jì)值界乎l和2l之間,取beforecracking,nearthecrackingaxisσc=ft,aftercracking,ifweselectthecrackingpositionandtheno-crackingsectionforstudy,respectivelyσs1=Ncr/As;Ncr-σs2As=ftAte=lminτmπd=ftAte/(τmπd)=dftinwhichThecrackspaceisbetweenland2l,sodefineft/τm接近一個常數(shù),再根據(jù)試驗(yàn)結(jié)論,對原假定進(jìn)行k1,k2ft/τmisclosetoaconstant,then,combinedwiththetestconclusion,theformulacanbewroteas:νrelatedtothesteeltypes:plainroundork1,k2isAssumingthecrackwidthnearsteelpositionisequaltothewidthonsurface,theequationisasfollow:ωm=(εsm-εcm)lm=εsm(1-εcm/εsm)lm=φσs/Esαclmm (1.9c0.08dm sk sk(1.9c0.08dE Es

EsE

1.10.65ft/teCrackwidthm (1.9c0.08dmAndconsideringτl(amplifyingcoefficientduetolongtermloadeffect)×τs(amplifyingcoefficientofthemaximumcrackwidthtotheaveragecrackwidth) sk sk(1.9c0.08dE Es

E Es

1.10.65ft/te

sqisthestressoflongitudinalreinforcementincrackingsectionofconcretemembercalculatedbyquasi-permanentcombinations.

0.87h Axia

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論