aps寶典提綱版英語7土力學_第1頁
aps寶典提綱版英語7土力學_第2頁
aps寶典提綱版英語7土力學_第3頁
aps寶典提綱版英語7土力學_第4頁
aps寶典提綱版英語7土力學_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

課程:土力學(SoilMechanics)

提問概率:65%

德國高校對于這門課的要求

Thiscourseaimsto:

Enablestudentsto appreciatetheroleofgeotechnicsincivilengineeringprojects.

Provideknowledgeandunderstandingof thefundamentalprinciplesofsoilasanengineeringmaterial.

課程提綱(德國大學):

SoilFormationSoilConsistencySoilCompactionSoilPermeability

Stresseswithinthesoil

APS模擬問題:(注意內容里的所有簡單計算)這門課你的分數為什么這么高?

你能說下你這門課都學了哪些關于土的知識?土可以怎么分類?

什么是風化?

什么是土的粘性?

土的流性指數如何計算?

研究土囊的壓實性有什么意義?哪些因素會影響壓實性?

土囊會受哪些應力?

Soil

ChapterOne

SoilFormationandBasic-Relationships

Isanyuncementedorweaklycementedaccumulationofmineralparticles

formedbyweatheringofrocks,thevoidbetweentheparticlescontainingwater/orair.Weakcementationcanbeduetocarbonatesoroxidesprecipitatedbetweentheparticlesorduetoorganiccarbonatesoroxidesprecipitatedbetweentheparticlesorduetoorganicmatter.

Dependingonthemethodofdeposition,soilscanbegroupedintotwocategories:

Residualsoils:

Thesoilswhichremainattheplaceofdisintegrationofparentrock.

Transportedsoils:

Thesoils,whichcarriedawayfromtheirplaceofdisintegrationtosomeotherplacebytransportingagencies.

Thetransportingagenciesmaybeclassifiedas:

i) Water ii)wind iii)gravity iv)Ice

Soingeneralsoilisformedfromdisintegrationofrocksoverlayingthe

earthcrust.

wind

rain

Weathering

Whichareusuallyresultsfromatmosphericprocessesactionontherockatorneartheearthsurface.

Mechanical(Physicalweathering):

Alltypeofactionsthatcauseadisintegrationoftheparentrocksbyphysicalmeanssuchas,gravity,windandwater.Theproductofthistypeisrounded,subroundedorgranular,itsproductscalledcoarsegrainedsoile.g.(gravelandsand)theypresentinnatureinasinglegrainstructure.

Coarsegrainedsoil

Sand&Gravel

Cohesionlesssoil

Itpropertiesarethesameasparentrock.2-Chemicalweathering

Alltypesofchemicalreactionsthatoccurbetweenthemineralsoftherockandtheenvironment(air,wateret.)andwillendupbydisintegrationofparentrockintofinegrainparticles;theseproductshavedifferentpropertiesfromtheparentrock.Theypresentinnatureasalumpsofnumberofplatelikeparticles.

Thephysicalpropertyofthisproductdoesnotreflectthesamepropertiesoftheparentrocks.

Finegrainedsoil

Siltandclay

Cohesivematerial

Itspropertiesdonotreflectthesamepropertiesoftheparentrocks.

Soil

Gravel,Dia

Sand

Silt

Clay

Dia:equivalentsdiameter(mm)

Clayminerals:Therearetwobasicstructureunitsthatformtypesofthemineralsintheclay:

TetrahedralUnit:Consistsoffouroxygenatoms(orhydroxyls,ifneededtobalancethestructure)andonesiliconatom.

Elevation Tetrahedralsheet

OctahedralUnit(consistofsixhydroxylionatapicesofanoctahedralenclosinganaluminumionatthecenter).

FormationofMinerals

Thecombinationoftwosheetsofsilicaandgibbsiteindifferentarrangementsandconditionleadtotheformationofdifferentclaymineralssuchas:

KaoliniteMineral:

Thisisthemostcommonmineralisthekaolin.Thestructureiscomposedofasingletetrahedralsheetandasinglealuminaoctahedralsheetasshowninfigurebelow:

StrongHydrogenBondSonotaffectedbywater

AnditsalsocalledChinaclay3-

Illitehasabasicstructureconsistingoftwosilicasheetswithacentralaluminasheet.

Thereisapotassiumbondbetweenthelayers.

Montmorilloniteunit:ThebasicstructuralunitissimilartothatofIllite.

Highlyaffectedbywater

HighlyaffectedbywaterwithhighshrinkageandSwellanditiscalledexpansivesoil.

ClayParticle–waterrelations:

Innatureeverysoilparticleissurroundedbywater.Sincethecentersofpositiveandnegativechargesofwatermoleculesdonotcoincide,themoleculesbehavelikedipoles.Thenegativechargeonthesurfaceofthesoilparticlethereforeattractsthepositive(hydrogen)endofthewatermolecules.Morethanonelayerofwatermoleculessticksonsurfacewithconsiderableforcedecreasewithincreaseinthedistanceofthewatermoleculefromthesurface.Theelectricallyattractedwatersurroundstheclayparticleisknownasthediffuseddouble-layerofwater.Thewaterlocatedwithinthezoneofinfluenceisknownastheadsorbedlayerasshowninfigure:

ClayParticle

Diffusedoublelayer

Adsorbedwaterlayersurroundingasoilparticle

Claystructures:

-Dispersedstructure

-flocculatedstructure

Distinguishbetweenflocculatedanddispersedstructures

Flocculated Dispersed

Morestrength Lowerstrength

Permeabilityishigher permeabilityisless

Lowcompressibility highercompressibility

BasicRelationships:

Wt=Ww+Ws

Where"#:totalweightofsoil

""∶Weightofwater"%:Weightofsolid"&∶Weightofair≈0

VolumeVt=Vv+Vs=Va+Vw

+Vs

()∶TotalVolume(*:VolumeofVoid(+:Volumeofair(,∶Volumeofwater(-:VolumeofSoild

UnitWeight–Density

"#$%

! =&#'(%*+$,-'

&#'(%.#%/0+

=*'

2'

Watercontent%

34%=55?899:; <4

56

Voidratio,e

e=v@

vA

Porosity(n%)

B%=DD?899DE

AircontentA%

F%=DG?899

DE

==5?899

=6

BulkDensity(totaldensity),HE

ρ=JK

I @K

Drydensity,

HL;M==6

DE

(N=?4=O):;(SN)

=O

Dryunitweight(TL;M)56

TL;M=DE

(SU?=O)

Specificgravity,V6

!"=%"='"?("= '"

%& %& ("?%&

!"=+"= &"?("= &" (itsvaluerangebetween2.6-2.85)

+& +& ("?+&

SolidDensity,%"

%"='"

("

, +"

=&"

("

SomeUsefulCorrelation:

1-S.e=!".-.

2-/=0

120

0=/

13/

4=/(1?")

4=03-?!"

120

120 120

%8=!"(12-)%& 9: +8=!"(12-)+&

120 120

%8=!"2"?0%& 9: +8=!"2"?0+&

%"=!"20%& 9: +"=!"20+&

120 120

%;:<=!"%& 9:+;= !"+&

120 120

10- %0==.=%?=%"?8?%&

11- +0==

=+?=!"31+

&

120

Sometypicalvaluesofvoidratio,moisturecontentinasaturatedcondition,anddryunitweightforsoilsinanaturalstatearegiveninthefollowingtable:

Table1-Voidratio,MoistureContent,andDryUnitWeightforsomeTypicalSoilsinaNaturalState.

TypeofSoil

Voidratio

Naturalmoisturecontentinasaturatedstate(%)

Dryunitweight,+;(@A?'B)

Looseuniformsand

0.8

30

14.5

Denseuniformsand

0.45

16

18

Looseangular-

grainedsiltysand

0.65

25

16

Denseangular-grainedsiltysand

0.4

15

19

Stiffclay

0.6

21

17

Softclay

0.9-1.4

30-50

11.5-14.5

Note:theweightofonekilogrammassis9.806Newton1kg=9.806N

Example-1:Initsconditionasoilsamplehasamassof2290gandavolumeof1.15*10-3m3.Afterbeingcompletelydriedinanoventhemassofthesampleis2035g.ThevalueofGsforthesoilis2.68.Determinethebulkdensity,unitweight,watercontent,voidratio,porosity,degreeofsaturationandaircontent.

Solution:

!"=%= '.')* =199034?56=1.99%8

& +.+,?+*./ 9/

Unitweight,:=%8=1990?9.8=19500=?56=19.53=?56

&

%? '')*A'*6,

Watercontent,>=%@= '*6, =0.125CD12.5%

:=F@(1+>I):

" 1+K ?

19.5=2.68(1+.125)?10

1+K

e=0.538

M *.,6O

Porosity,n=+NM=+.,6O =0.3490~0.35

S.K=F@.>I

*.+',?'.TO

Degreeofsaturation,S= *.,6O = 62.267%

Aircontent,A=n(1-S)=0.35(1-.62)=0.132

ChapterTwo

PlasticityofFineGrainedSoils

Plasticityistheabilityofasoiltoundergounrecoverabledeformationatconstantvolumewithoutcrackingorcrumbling.Itisduetothepresenceofclaymineralsororganicmaterial.

Consistencylimits(Atterberglimits):

Atterberg,aSwedishscientistdevelopedamethodfordescribingthelimitconsistencyoffinegrainedsoilsonthebasisofmoisturecontent.Theselimitsareliquidlimit,plasticlimitandshrinkagelimit.

Liquidlimit(L.L):isdefinedasthemoisturecontentinpercentatwhichthesoilchangesfromliquidtoplasticstate.

PlasticLimit(P.L.):Themoisturecontentsin%atwhichthesoilchangesfromplastictosemisolidstate.

ShrinkageLimit(S.L.):Themoisturecontentsin%atwhichthesoilchangesfromsemisolidtosolidstate.

PlasticityIndex(P.I.):itistherangeinmoisturecontentwhenthesoilexhibiteditsplasticbehavior:

!.#.=%.%–!.%.

LiquidityIndex(L.I.orIL):arelationbetweenthenaturalmoisturecontents(())and(L.L.)and(P.L.)inform:

If LI>1 ThenthesoilatLiquidstateIf LI=1thenthesoilatL.L.

If%#<1thenthesoilbelowL.L.

Activity:isthedegreeofplasticityoftheclaysizefractionofthesoilandisexpressedas:

!"#$%$#&= ).+

%-."/0&1$23405#$"/31

PlasticityChart:basedonAtterberglimits,theplasticitychartwasdevelopedbyCasagrandetoclassifythefinegrainedsoil.

Someusefulnotes:

%6∶Constantatallstages

Degreeofsaturation(S%)atS.L.andupto=100%

DegreeofSaturationintheregionfromS.L.andbelow<100%

%&'()=%&,&-./.

%0'()=%0,&-./.

1'()=1-./.

RelativeDensity:istherationoftheactualdensitytothemaximumpossibledensityofthesoilitisexpressedintermsofvoidratio.

23(%)= 16,7819

16,7?16;9

?100

Or 23(%)==>?@A? =>BCD>?EB ?100

=>B =>?@A8=>?EB

16,7:Thevoidratioofthesoilinitsloosestcondition16;9:Thevoidratioofthesoilinitsdensestcondition19:ThevoidratioofthesoilinitsnaturalconditionF'6,7:Maximumdryunitweight(at16;9)

F'6;9:Minimumdryunitweight(at16,7)

F'9:Naturaldryunitweight(at19)

RD

Description

G

0 - H

loose

1? 2

3 3

medium

2? 1

3

Dense

,-

Example1:foragranularsoil,given,!"#$=17.3*+,relativedensity=82%,

3=8%and45=2.65.If8,9:=0.44.whatwouldbe8,=>?whatwouldbethedryunitweightinthelooseststate?

Solution:

!"#$= @A ?10 17.3= G.HI ?10

BCDE BCDE

∴ 8:

=0.53 KL= DMNOPDE ?100

DMNOPDMQE

0.82=DMNOPR.IS

DMNOPR.TT

∴ 8,=>=0.94

∴! (WXYZZ[8[X)= 45

! = 2.65

?10

"#$

1+8,=> ^

=13.65_`?aS

1+0.94

Example2:agranularsoiliscompactedtomoistunitweightof20.45_`?aSatmoisturecontentof18%.Whatisrelativedensityofthecompactedsoil?Given,8,=>=0.85,8,9:=0.42Wcd45=2.65?

Solution:

^

!=@A(BCef)!

BCDE

20.45=G.HI(BCR.Bg)?10

BCD

∴8:

=0.52 KL= DMNOPDE =

DMNOPDMQE

KL=0.85?0.52

0.85?0.42

?100=76.74%

Example3:Adrysampleofsoilhavingthefollowingproperties,L.L.=52%,

P.L.=30%,45=2.7,e=0.53. Find:Shrinkagelimit,d#$density,dryunitweight,andaircontentatdrystate.

Solution

ChapterthreeSoilCompaction

Soilcompactionisoneofthemostcriticalcomponentsintheconstructionofroads,airfield,embankmentsandfoundations.Thedurabilityandstabilityofastructurearerelatedtotheachievementofpropersoilcompaction.Structuralfailureofroads,airfieldandthedamagecausedbyfoundationsettlementcanoftenbetracedbacktothefailuretoachievepropersoilcompaction.

Compactionofsoil:

Compactionistheprocessofincreasingthedensityofasoilbypackingtheparticlesclosertogetherwithareductioninthevolumeofaironly.Compactionincreasesthedrydensityanddecreasesthevoidratio.

Purposeofcompaction:

Increaseshearstrengthofsoil

Reducevoidratiothusreducepermeability

Controllingtheswell-shrinkagemovement

Reducesettlementunderworkingload

Preventthebuildupoflargewaterpressure

Factorsaffectingcompaction:

Watercontent

Typeofsoil

Compactionenergyoreffort

Allthesefactorsareshowninthefollowingfigures:

TheeffectoftypesofsoilonthedrydensityusingthesamecompactionEnergy.

Differentincompactionenergyandtypesofsoil

Theoryofcompaction:

Compactionistheprocessofreducingtheaircontentbytheapplicationofenergytothemoistsoil.Fromcompactiontestwecanfind:

Thereisauniquerelationshipbetweenthewatercontentandthedrydensityforspecificcompactionenergy.

Thereisonewatercontent(O.M.C.)(Optimummoisturecontent)atwhichthemaxdrydensityisachieved

ThetwoabovepointscanbeclearlyshownthroughthefollowingFigure:

ChapterFive

SoilPermeabilityandFlow

SOILPERMEABILITY

Amaterialispermeableifitcontainscontinuousvoids.Allmaterialssuchasrocks,concrete,soilsetc.arepermeable.Theflowofwaterthroughallofthemobeysapproximatelythesamelaws.Hence,thedifferencebetweentheflowofwaterthroughrockorconcreteisoneofdegree.Thepermeabilityofsoilshasadecisiveeffectonthestabilityoffoundations,seepagelossthroughembankmentsofreservoirs,drainageofsubgrades,excavationofopencutsinwaterbearingsand,rateofflowofwaterintowellsandmanyothers.

HydraulicGradient

Whenwaterflowsthroughasaturatedsoilmassthereiscertainresistancefortheflowbecauseofthepresenceofsolidmatter.However,thelawsoffluidmechanicswhichareapplicablefortheflowoffluidsthroughpipesarealsoapplicabletoflowofwaterthroughsoils.AsperBernoulli's

equation,thetotalheadatanypointinwaterundersteadyflowconditionmaybeexpressedas

Totalhead=pressurehead+velocityhead+elevationhead

HydraulicGradient

Whenwaterflowsthroughasaturatedsoilmassthereiscertainresistancefortheflowbecauseofthepresenceofsolidmatter.Thelawsoffluidmechanicswhichareapplicablefortheflowoffluidthroughpipesarealsoapplicabletoflowofwaterthroughsoils.Thetotalheadatanypointinwaterundersteadyflowconditionmaybeexpressedas:

Totalhead=pressurehead+velocityhead+elevationhead

TheflowofwaterthroughasampleofsoiloflengthLandcross-sectionalareaAasshowninfigure1:

!" = %"+

!. =%.+

'"+ +

*

"

() 2-

*

/

'/+ +

() 2-

Figure

(1)flowofwaterthroughasoilsample

Forallpracticalpurposesthevelocityheadisasmallquantityandmaybeneglected.

Thewaterflowsfromthehighertotalheadtolowertotalhead.SothewaterwillflowfrompointBtoC.

!"?!.=(%"+23)-(%.+27)

45 45

Where,%"and%.=89:*;<=>??:;A,'"and'.=PressureHead.Thelossofheadperunitlengthofflowmaybeexpressesas:

==?

C

Whereiisthehydraulicgradient.

Hydraulicgradient:

Thepotentialdropbetweentwoadjacentequipotentialsdividedbythedistancebetweenthemisknownasthehydraulicgradient.

DARCY'SLAW

Darcyin1856derivedanempiricalformulaforthebehaviorofflowthroughsaturatedsoils.Hefoundthatthequantityofwaterqpersecflowingthroughacross-sectionalareaofsoilunderhydraulicgradient/canbeexpressedbytheformula

q=kiA

orthevelocityofflowcanbewrittenas

!=#

$

Wherekistermedthehydraulicconductivity(orcoefficientofpermeability)withunitsofvelocity.Thecoefficientofpermeabilityisinverselyproportionaltotheviscosityofwaterwhichdecreaseswithincreasingtemperature;therefore,permeabilitymeasurementatlaboratorytemperaturesshouldbecorrectedtothevaluesatstandardtemperatureof200Cusingthefollowingequation.

Where%&':Coefficientofpermeabilityat200C

%(:CofficientofpermeabilityatLab.Temperture0C

)(Viscosityofwateratlab.Temperature

)&'Viscosityofwaterat200C

Table(1):Theof!"

!#$

atdifferenttemperature.

DISCHARGEANDSEEPAGEVELOCITIES:

FigurebelowshowsasoilsampleoflengthLandcross-sectionalareaA.Thesampleisplacedinacylindricalhorizontaltubebetweenscreens.ThetubeisconnectedtotworeservoirsR1andR2inwhichthewaterlevelsaremaintainedconstant.ThedifferenceinheadbetweenR1andR2ish.Thisdifferenceinheadisresponsiblefortheflowofwater.SinceDarcy'slawassumesnochangeinthevolumeofvoidsandthesoilissaturated,thequantityofflowpastsectionsAA,BBandCCshouldremainthesameforsteadyflowconditions.Wemayexpresstheequationofcontinuityasfollows

qaa=qbb=qcc

Ifthesoilberepresentedasdividedintosolidmatterandvoidspace,thentheareaavailableforthepassageofwaterisonlyAv.Ifvs.isthevelocityofflowinthevoids,andv,theaveragevelocityacrossthesectionthen,wehave

Where!"istheareaofthevoid,#$istheseepagevelocity,#istheapproachvelocity

A:isthecrosssectionalareaofthesample

#= !?(

$ !"?(

Wheren:istheporosityofthesoil

#=#)

#"

#=#

*

METHODSOFDETERMINATIONOFHYDRAULIC

CONDUCTIVITYOFSOILS(Coefficientofpermeability).

Stresseswithinthesoil

Stresseswithinthesoil:Typesofstresses:

Geostaticstress:SubSurfaceStressescausebymassofsoil

Verticalstress !"=∑#?

HorizontalStress!"='(!"

Note:Geostaticstressesincreasedlineralywithdepth.2-Stressesduetosurfaceloading:

Infintlyloadedarea(filling)

Pointload(concentratedload)

Circularloadedarea.

Rectangularloadedarea.

Introduction:

Atapointwithinasoilmass,stresseswillbedevelopedasaresultofthesoillyingabovethepoint(Geostaticstress)andbyanystructureorotherloadingimposedintothatsoilmass.

1-

stressesdueGeostaticsoilmass

!"= #?(Geostaticstress)

!)=*(!" , where*(:isthecoefficientofearthpressureatrest.

EFFECTIVESTRESSCONCEPT:Insaturatedsoils,thenormalstress(σ)atanypointwithinthesoilmassissharedbythesoilgrainsandthewaterheldwithinthepores.Thecomponentofthenormalstressactingonthesoilgrains,iscalledeffectivestressorintergranularstress,andisgenerallydenotedbyσ'.Theremainder,thenormalstressactingontheporewater,isknowsasporewaterpressureorneutralstress,andisdenotedbyu.Thus,thetotalstressatanypointwithinthesoilmasscanbewrittenas:

!="#?+u

This

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論