第四章幾類重要概率分布d4 1二項分布_第1頁
第四章幾類重要概率分布d4 1二項分布_第2頁
第四章幾類重要概率分布d4 1二項分布_第3頁
第四章幾類重要概率分布d4 1二項分布_第4頁
第四章幾類重要概率分布d4 1二項分布_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

其它重要的概率分布正態(tài)分布第四章二項分布泊松分布幾類重要的概率分布二維正態(tài)分布及二維均勻分布

第四章

第一節(jié)二項分布(13)二、二項分布三、二項分布的數(shù)學(xué)期望與方差一、伯努利概型一、伯努利概型(Bernoulli)在確定條件下進行n次獨立重復(fù)試驗,每次試驗只有兩個相互獨立的結(jié)果A與則稱這n次獨立重復(fù)試驗為n

重伯努利試驗(概型)。伯努利概型是應(yīng)用十分廣泛的一種概率模型,如在相同條件下重復(fù)投擲一枚硬幣n次,在有一定數(shù)量次品的產(chǎn)品中進行n次有放回抽取,,且定理:

在n重伯努利試驗中,事件A恰好發(fā)生k次的概率為:證:由于試驗是相互獨立的,則事件A

在指定k次試驗中發(fā)生而在其余n-k

次試驗中不發(fā)生的概率為:由組合公式,事件A

在n

次試驗中恰好發(fā)生k

次的數(shù)目應(yīng)為種,而這個事件是互不相容的,所以證畢.二、二項分布在n重伯努利試驗中,用X

表示事件A

發(fā)生的次數(shù),則X

是一離散型隨機變量,可能取值為:其分布律為:或?qū)憺椋簞t稱X服從參數(shù)為n,p的二項分布,記為顯然滿足:(1)非負(fù)性:(2)規(guī)范性:特別地,當(dāng)時,X的分布律為:稱X

服從參數(shù)為p

的(0-1)分布,或兩點分布.例1

若在M

件產(chǎn)品中有N

件廢品,現(xiàn)進行有放回的n

次抽樣檢查,問共取得k

件廢品的概率。解:由于是有放回的抽樣,因此這是n

重伯努利試驗。記A為“各次試驗中出現(xiàn)廢品”,則設(shè)X

為n

次抽樣檢查中抽到的廢品數(shù),則因此,所求概率為例2

一張考卷上有5道選擇題,每道題列出4個可能答案,其中只有一個答案是正確的.某學(xué)生靠猜測至少能答對4道題的概率是多少?每答一道題相當(dāng)于做一次伯努利試驗,解:記A={答對一道題},則則答5道題相當(dāng)于做5重伯努利試驗.設(shè)X

:該學(xué)生靠猜測能答對的題數(shù),則例3

假設(shè)一廠家生產(chǎn)的每臺儀器以概率0.7可以直接出廠;以概率0.3需進一步調(diào)試,經(jīng)調(diào)試后以概率0.8

可以出廠,以概率0.2定為不合格品不能出廠?,F(xiàn)該(1)全部能出廠的概率;解:記A={儀器需進一步調(diào)試},B={儀器能出廠},則={儀器能直接出廠},={儀器經(jīng)調(diào)試后能出廠}程相互獨立),求:廠新生產(chǎn)了

臺儀器(假設(shè)每臺儀器的生產(chǎn)過(2)其中恰好有2臺不能出廠的概率;(3)其中至少有2臺不能出廠的概率;由題意知設(shè)X

為所生產(chǎn)的n

臺儀器中能出廠的臺數(shù),則所以

A={儀器需進一步調(diào)試},B={儀器能出廠},

={儀器能直接出廠},={儀器經(jīng)調(diào)試后能出廠}三、二項分布的數(shù)學(xué)期望與方差設(shè)其分布律為:因X

可看成n

重伯努利試驗中事件A

發(fā)生的次數(shù),用表示事件A

在第i

次試驗中發(fā)生的次數(shù),則相互獨立,同時服從參數(shù)為p的(0-1)分布,且而由數(shù)學(xué)期望與方差的性質(zhì)有(雅各布第一·伯努利)

書中給出的伯努利數(shù)在很多地方有用,伯努利(1654–1705)瑞士數(shù)學(xué)家,位數(shù)學(xué)家.標(biāo)和極坐標(biāo)下的曲率半徑公式,1695年版了他的巨著《猜度術(shù)》,上的一件大事,而伯努利定理則是大數(shù)定律的最早形式.年提出了著名的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論