![多邊形的內(nèi)角和 市賽獲獎_第1頁](http://file4.renrendoc.com/view/45921838850215cdd68dd8bcde01619b/45921838850215cdd68dd8bcde01619b1.gif)
![多邊形的內(nèi)角和 市賽獲獎_第2頁](http://file4.renrendoc.com/view/45921838850215cdd68dd8bcde01619b/45921838850215cdd68dd8bcde01619b2.gif)
![多邊形的內(nèi)角和 市賽獲獎_第3頁](http://file4.renrendoc.com/view/45921838850215cdd68dd8bcde01619b/45921838850215cdd68dd8bcde01619b3.gif)
![多邊形的內(nèi)角和 市賽獲獎_第4頁](http://file4.renrendoc.com/view/45921838850215cdd68dd8bcde01619b/45921838850215cdd68dd8bcde01619b4.gif)
![多邊形的內(nèi)角和 市賽獲獎_第5頁](http://file4.renrendoc.com/view/45921838850215cdd68dd8bcde01619b/45921838850215cdd68dd8bcde01619b5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1132多邊形的內(nèi)角和第十一章三角形113多邊形及其內(nèi)角和八年級數(shù)學(xué)上(RJ)教學(xué)課件情境引入學(xué)習(xí)目標(biāo)1能通過不同方法探索多邊形的內(nèi)角和與外角和公式(重點)2學(xué)會運用多邊形的內(nèi)角和與外角和公式解決問題(難點)法國的建筑事務(wù)所atelierd將協(xié)調(diào)堅固的蜂窩與人類天馬行空的想象力結(jié)合,創(chuàng)造了這個“abeillesbeepavilion”導(dǎo)入新課情景引入思考:你知道正六邊形的內(nèi)角和是多少嗎?問題2你知道長方形和正方形的內(nèi)角和是多少度?
問題1三角形內(nèi)角和是多少度?三角形內(nèi)角和是180°都是360°問題3猜想任意四邊形的內(nèi)角和是多少度?
講授新課多邊形的內(nèi)角和一猜想:四邊形ABCD的內(nèi)角和是360°問題4你能用以前學(xué)過的知識說明一下你的結(jié)論嗎?猜想與證明方法1:如圖,連接AC,所以四邊形被分為兩個三角形,所以四邊形ABCD內(nèi)角和為180°×2=360°ABCDABCDE方法2:如圖,在CD邊上任取一點E,連接AE,DE,所以該四邊形被分成三個三角形,所以四邊形ABCD的內(nèi)角和為180°×3-∠AEB∠AED∠CED=180°×3-180°=360°方法3:如圖,在四邊形ABCD內(nèi)部取一點E,連接AE,BE,CE,DE,把四邊形分成四個三角形:△ABE,△ADE,△CDE,△CBE所以四邊形ABCD內(nèi)角和為:180°×4-∠AEB∠AED∠CED∠CEB=180°×4-360°=360°ABCDEABCDP方法4:如圖,在四邊形外任取一點P,連接PA、PB、PC、PD將四邊形變成有一個公共頂點的四個三角形所以四邊形ABCD內(nèi)角和為180°×3-180°=360°這四種方法都運用了轉(zhuǎn)化思想,把四邊形分割成三角形,轉(zhuǎn)化到已經(jīng)學(xué)了的三角形內(nèi)角和求解結(jié)論:四邊形的內(nèi)角和為360°例1:如果一個四邊形的一組對角互補(bǔ),那么另一組對角有什么關(guān)系?試說明理由解:
如圖,四邊形ABCD中,∠A∠C=180°∠A∠B∠C∠D=4-2×180°=360°,因為∠B+∠D=360°-(∠A+∠C)=360°-180°=180°所以ABCD如果一個四邊形的一組對角互補(bǔ),那么另一組對角互補(bǔ)典例精析【變式題】如圖,在四邊形ABCD中,∠A與∠C互補(bǔ),BE平分∠ABC,DF平分∠ADC,若BE∥DF,求證:△DCF為直角三角形.證明:∵在四邊形ABCD中,∠A與∠C互補(bǔ),∴∠ABC∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠CDF∠EBF=90°,∵BE∥DF,∴∠EBF=∠CFD,∴∠CDF∠CFD=90°,故△DCF為直角三角形.運用了整體思想ACDEBABCDEF問題5你能仿照求四邊形內(nèi)角和的方法,選一種方法求五邊形和六邊形內(nèi)角和嗎內(nèi)角和為180°×3=540°內(nèi)角和為180°×4=720°n邊形六邊形五邊形四邊形三角形多邊形內(nèi)角和分割出三角形的個數(shù)從多邊形的一頂點引出的對角線條數(shù)圖形邊數(shù)······0n-31231234n-2(n-2)·180o1×180o=180o2×180o=360o3×180o=540o4×180o=720o························由特殊到一般分割多邊形三角形分割點與多邊形的位置關(guān)系頂點邊上內(nèi)部外部轉(zhuǎn)化思想總結(jié)歸納多邊形的內(nèi)角和公式n邊形內(nèi)角和等于n-2×180°例2一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多720°,并且這個多邊形的各內(nèi)角都相等,這個多邊形的每個內(nèi)角是多少度?解:設(shè)這個多邊形邊數(shù)為n,則(n-2)?180=360720,解得n=8,∵這個多邊形的每個內(nèi)角都相等,(8-2)×180°=1080°,∴它每一個內(nèi)角的度數(shù)為1080°÷8=135°.典例精析例3已知n邊形的內(nèi)角和θ=(n-2)×180°.(1)甲同學(xué)說,θ能取360°;而乙同學(xué)說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;解:∵360°÷180°=2,630°÷180°=390°,∴甲的說法對,乙的說法不對,360°÷180°2=4.故甲同學(xué)說的邊數(shù)n是4;(2)若n邊形變?yōu)椋╪)邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定.解:依題意有(n-2)×180°-(n-2)×180°=360°,解得=2.故的值是2.【變式題】一個同學(xué)在進(jìn)行多邊形的內(nèi)角和計算時,求得內(nèi)角和為1125°,當(dāng)他發(fā)現(xiàn)錯了以后,重新檢查,發(fā)現(xiàn)少算了一個內(nèi)角,問這個內(nèi)角是多少度?他求的是幾邊形的內(nèi)角和?解:設(shè)此多邊形的內(nèi)角和為,則有1125°<<1125°+180°,即180°×6+45°<<180°×7+45°,因為為多邊形的內(nèi)角和,所以它是180°的倍數(shù),所以=180°×7=1260°所以7+2=9,1260°-1125°=135°因此,漏加的這個內(nèi)角是135°,這個多邊形是九邊形.思路點撥:多邊形的內(nèi)角的度數(shù)在0°~180°之間例4如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數(shù).解析:根據(jù)五邊形的內(nèi)角和等于540°,由∠C,∠D,∠E的度數(shù)可求∠EAB∠ABC的度數(shù),再根據(jù)角平分線的定義可得∠PAB與∠PBA的角度和,進(jìn)一步求得∠P的度數(shù).可運用了整體思想解:∵∠EAB∠ABC∠C∠D∠E=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB∠ABC=540°-∠C-∠D-∠E=230°∵AP平分∠EAB,∴∠PAB=∠EAB,同理可得∠ABP=∠ABC,∵∠P∠PAB∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°?∠EAB∠ABC=180°?×230°=65°.241324132413241324132413241324132413241324132413用形狀、大小完全相同的任意四邊形可拼成一塊無空隙的地板,你知道這是為什么嗎?
你知道嗎?多邊形的外角和二如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊形的外角和.問題1:任意一個外角和它相鄰的內(nèi)角有什么關(guān)系?問題2:五個外角加上它們分別相鄰的五個內(nèi)角和是多少?EBCD123
45A互補(bǔ)5×180°=900°EBCD123
45A五邊形外角和=360°=5個平角-五邊形內(nèi)角和=5×180°-5-2×180°結(jié)論:五邊形的外角和等于360°問題3:這五個平角和與五邊形的內(nèi)角和、外角和有什么關(guān)系?在n邊形的每個頂點處各取一個外角,這些外角的和叫做n邊形的外角和.n邊形外角和n邊形的外角和等于360°-n-2×180°=360°=n個平角-n邊形內(nèi)角和=n×180°AnA2A3A4123
4nA1思考:n邊形的外角和又是多少呢?與邊數(shù)無關(guān)問題4:回想正多邊形的性質(zhì),你知道正多邊形的每個內(nèi)角是多少度嗎?每個外角呢?為什么?每個內(nèi)角的度數(shù)是每個外角的度數(shù)是練一練:1若一個正多邊形的內(nèi)角是120°,那么這是正____邊形2已知多邊形的每個外角都是45°,則這個多邊形是______邊形六正八典例精析例4已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù)解:設(shè)多邊形的邊數(shù)為n∵它的內(nèi)角和等于n-2?180°,多邊形外角和等于360°,∴n-2?180°=2×360o解得n=6∴這個多邊形的邊數(shù)為6例5已知一個多邊形的每個內(nèi)角與外角的比都是7:2,求這個多邊形的邊數(shù)解法一:設(shè)這個多邊形的內(nèi)角為7°,外角為2°,根據(jù)題意得72=180,解得=20即每個內(nèi)角是140°,每個外角是40°360°÷40°=9答:這個多邊形是九邊形還有其他解法嗎?解法二:設(shè)這個多邊形的邊數(shù)為n,根據(jù)題意得解得n=9答:這個多邊形是九邊形【變式題】一個正多邊形的一個外角比一個內(nèi)角大60°,求這個多邊形的每個內(nèi)角的度數(shù)及邊數(shù).解:設(shè)該正多邊形的內(nèi)角是°,外角是y°,則得到一個方程組解得而任何多邊形的外角和是360°,則該正多邊形的邊數(shù)為360÷120=3,故這個多邊形的每個內(nèi)角的度數(shù)是60°,邊數(shù)是三條.例6如圖,在正五邊形ABCDE中,連接BE,求∠BED的度數(shù).解:由題意得AB=AE,所以∠AEB=180°-∠A=36°,所以∠BED=∠AED-∠AEB=108°-36°=72°當(dāng)堂練習(xí)1判斷.1當(dāng)多邊形邊數(shù)增加時,它的內(nèi)角和也隨著增加2當(dāng)多邊形邊數(shù)增加時,它的外角和也隨著增加3三角形的外角和與八邊形的外角和相等.2一個正多邊形的內(nèi)角和為720°,則這個正多邊形的每一個內(nèi)角等于______.120°3如圖所示,小華從點A出發(fā),沿直線前進(jìn)10米后左轉(zhuǎn)24°,再沿直線前進(jìn)10米,又向左轉(zhuǎn)24°,…,照這樣走下去,他第一次回到出發(fā)地點A時,走的路程一共是________米.1504一個多邊形的內(nèi)角和不可能是()A1800°B540°C720°D810°D5一個多邊形從一個頂點可引對角線3條,這個多邊形內(nèi)角和等于()A360°B540°C720°D900°B6一個多邊形的內(nèi)角和為1800°,截去一個角后,求得到的多邊形的內(nèi)角和解:∵1800÷
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Perfluoropentane-Dodecafluoropentane-生命科學(xué)試劑-MCE-3888
- Ergocornine-生命科學(xué)試劑-MCE-6625
- 10-Norparvulenone-生命科學(xué)試劑-MCE-1894
- 二零二五年度智能制造股權(quán)融資協(xié)議
- 二零二五年度游戲軟件試用授權(quán)合同
- 二零二五年度企業(yè)退休人員再就業(yè)解除合同協(xié)議
- 2025年度貨運駕駛員綠色出行與節(jié)能減排合同
- 2025年度新能源項目電力施工簡易協(xié)議書
- 2025年度豪華公寓私人房屋轉(zhuǎn)租管理服務(wù)合同
- 科技在校園食品安全保障中的應(yīng)用
- 2025-2030年中國反滲透膜行業(yè)市場發(fā)展趨勢展望與投資策略分析報告
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級上學(xué)期期末質(zhì)量檢測道德與法治試題 (含答案)
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期1月期末 英語試題
- 春節(jié)節(jié)后收心會
- 《榜樣9》觀后感心得體會四
- 七年級下冊英語單詞表(人教版)-418個
- 交警安全進(jìn)校園課件
- (2024年高考真題)2024年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試卷-新課標(biāo)Ⅰ卷(含部分解析)
- HCIA-AI H13-311 v3.5認(rèn)證考試題庫(含答案)
- 潤滑油過濾培訓(xùn)
- 內(nèi)蒙自治區(qū)烏蘭察布市集寧二中2025屆高考語文全真模擬密押卷含解析
評論
0/150
提交評論