




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
IntroductoryEconometrics18.
MultipleRegressionAnalysis:Heteroskedasticity
y=b0+b1x1+b2x2+...bkxk+uIntroductoryEconometrics2WhatisHeteroskedasticity
Recalltheassumptionofhomoskedasticityimpliedthatconditionalontheexplanatoryvariables,thevarianceoftheunobservederror,u,wasconstantIfthisisnottrue,thatisifthevarianceofuisdifferentfordifferentvaluesofthex’s,thentheerrorsareheteroskedasticExample:estimatingreturnstoeducationandabilityisunobservable,andthinkthevarianceinabilitydiffersbyeducationalattainmentIntroductoryEconometrics3of75.Educationlevelprimarysecondaryf(y|x)IllustrationofHeteroskedasticity(wage2.dta)college..E(y|x)=b0+b1xwagehistogramsofwageratesforeacheducationdegree,IntroductoryEconometrics4CheckingtheExistenceofHSK:plottingtheresidualsagainstthefittedvaluesIntroductoryEconometrics5IntroductoryEconometrics6
Whenthereisheteroskedasticity…
OLSisstillunbiasedandconsistent.R-squaredoradjustedR-squaredarestillfinegoodness-of-fitmeasures.
IntroductoryEconometrics7
R-squaredoradjustedR-squaredTheyareestimatesofthepopulationR-squared,1
–[Var(u)/Var(y)],wherethevariancesaretheunconditionalvariancesinthepopulation.TheyconsistentlyestimatethepopulationR-squared,whetherornotVar(u|x)
=Var(y|x)dependsonx.
IntroductoryEconometrics8WhyWorryAboutHeteroskedasticity?ThestandarderrorsoftheestimatesarebiasedifwehaveheteroskedasticityIfthestandarderrorsarebiased,wecannotusetheusualtstatisticsorFstatisticsorLMstatisticsfordrawinginferencesIntroductoryEconometrics9
Whattodo?Econometricianshavelearnedhowtoadjuststandarderrors,t,F,andLMstatisticssothattheyarevalidinthepresenceofheteroskedasticityofunknownform.White(1980)showsthatthevariances,,canbeestimatedinthepresenceofheteroskedasticity.
IntroductoryEconometrics10VariancewithHeteroskedasticityIntroductoryEconometrics11VariancewithHeteroskedasticityIntroductoryEconometrics12of75VariancewithHeteroskedasticityThesquarerootofiscalled:
Heteroskedasticity-robuststandarderror,orWhitestandarderror,orHuberstandarderror,orEickerstandarderrors,orIntroductoryEconometrics13RobustStandardErrors
Nowthatwehaveaconsistentestimateofthevariance,thesquarerootcanbeusedasastandarderrorforinferenceTypicallycalltheserobuststandarderrorsSometimestheestimatedvarianceiscorrectedfordegreesoffreedombymultiplyingbyn/(n–k–1)Asn→∞it’sallthesame,thoughIntroductoryEconometrics14RobustStandardErrors(cont)
Importanttorememberthattheserobuststandarderrorsonlyhaveasymptoticjustification–withsmallsamplesizeststatisticsformedwithrobuststandarderrorswillnothaveadistributionclosetothet,andinferenceswillnotbecorrectInStata,robuststandarderrorsareeasilyobtainedusingtherobustoptionofregIntroductoryEconometrics15of75Example:robustseversususualse
(wage1.dta)IntroductoryEconometrics16IntroductoryEconometrics17IntroductoryEconometrics18
Example:robustseversususualseWhatdowelearn?Robuststandarderrorscanbeeitherlargerorsmallerthantheusualstandarderrors.Butempiricallytherobuststandarderrorsareoftenfoundtobelargerthanthestandarderrors.Ifthedifferencesbetweenthesetwoerrorsarelarge,thentheconclusionsforstatisticalinferencecanbeverydifferent.IntroductoryEconometrics19
Now,whycareabouttheusualse?Giventhatrobuststandarderrorsarevalidwhetherornotheteroskedasticityispresent,thenwhydowestillneedtheusualstandarderror?
NoticethatRobuststandarderrorsarejustifiedonlywhenthesamplesizeislarge.
IntroductoryEconometrics20RobustStandardErrorsWhenthesamplesizeissmallandthehomoskedasticyassumptionactuallyholds,theusualtstatisticshaveexacttdistribution,butthiswillnotbethecaseforrobuststandarderrors,henceinferencesmaynotbecorrect
Whenthesamplesizeislarge,reportingrobuststandarderrors(ortogetherwiththeusualstandarderrors)aremended,esp.inusingcross-sectionaldata.
IntroductoryEconometrics21
Heteroskedasticy(HSK)-robustInferenceafterOLSestimation(tstat.)LetrsedenoteHSK-robuststandarderrors
trse=(estimate-hypothesizedvalue)/(rse)
IntroductoryEconometrics22
Heteroskedasticy(HSK)-robustInferenceafterOLSestimation(Fstat.)TheHSK-RobustFstatisticWithHSKtheusualFstatisticisnolongerFdistributed.TheHSK-RobustFstatisticisalsocalledWaldstatistic HSKStataautomaticallycalculateitafterrobustregressionIntroductoryEconometrics23
Example:comparetheusualandrobustregressions:theusualregressions(birth.dta)IntroductoryEconometrics24
Example:usebirth.dta,FstatisticfortheusualregressionTotestwhetherthevariablemeasuringmother’seducation(motheduc)andwhetherlogfamilye(lfaminc)jointlyhavestatisticallysignificantimpacts,justtypeinSTATAExample:comparetheusualandrobustregressions:thetobustregressions(birth.dta)IntroductoryEconometrics25IntroductoryEconometrics26
Example:usebirth.dta,FstatisticfortherobustregressionFortherobustregression,theFstatisticisnowIntroductoryEconometrics27ARobustLMStatistic
RunOLSontherestrictedmodelandsavetheresiduals?Regresseachoftheexcludedvariablesonalloftheincludedvariables(qdifferentregressions)andsaveeachsetofresiduals?1,?2,…,?qRegressavariabledefinedtobe=1
on?1?,?2?,…,?q?,withnointerceptTheLMstatisticisn–SSR1,whereSSR1isthesumofsquaredresidualsfromthisfinalregressionIntroductoryEconometrics28
Example:theLMfortheusualregression(1)
crime1.dtaH0:β2=β3=0H1:β2和β3至少有一個(gè)不為0Steps(i)對約束模型進(jìn)行回歸,得到殘差(ii)用對無約束模型的所有解釋變量進(jìn)行回歸,得到Ru2
IntroductoryEconometrics29IntroductoryEconometrics30IntroductoryEconometrics31of75Example:theLMfortheusualregression(2)
crime1.dta可知Ru2
=0.0013,進(jìn)而有LM=nRu2=2725×0.0013=3.46Df=2,顯著性水平為5%的
2
分布臨界值為5.99,顯然有LM<5.99,因此不能拒絕H0.IntroductoryEconometrics32
Example:theLMfortherobustregression(1)
crime1.dta從約束模型中得到殘差將被排除的2個(gè)變量對所有未排除變量回歸,保存殘差,用r1和r2表示。分別求出與r1和r2的乘積,分別用x1和x2表示用1對x1和x2做不包括截距項(xiàng)的回歸IntroductoryEconometrics33
Example:theLMfortherobustregression(2)
crime1.dtaIntroductoryEconometrics34IntroductoryEconometrics35of75Example:theLMfortherobustregression(3)
crime1.dta從而可得到LM統(tǒng)計(jì)量為3.997查自由度為2的
2分布5%的顯著性水平下臨界值為5.99.顯然LM<5.99。因此不能拒絕零假設(shè)。注意:穩(wěn)健回歸和普通回歸的LM檢驗(yàn)結(jié)果一致IntroductoryEconometrics36
TestingforHSKThoughwehavemethodsofcomputingHSK-robustt,FandLMstatistics,therearestillreasonsforhavingsimpleteststhatcandetectthepresenceofheteroskedasticity.
IntroductoryEconometrics37
TestingforHSKReasonNo.1:WemayprefertoseetheusualOLSstandarderrorsandteststatisticsreportedunlessthereisevidenceofheteroskedasticity.
ReasonNo.2:Ifheteroskedasticityispresent,theOLSestimatorisnolongertheBLUE,thenitispossibletoobtainabetterestimatorthanOLS.IntroductoryEconometrics38TheBreuschnTestforHSK
EssentiallywanttotestH0:Var(u|x1,x2,…,xk)=s2,whichisequivalenttoH0:E(u2|x1,x2,…,xk)=E(u2)=s2Ifassumetherelationshipbetweenu2andxjwillbelinear,cantestasalinearrestrictionSo,foru2=d0+d1x1+…+dkxk+v)thismeanstestingH0:d1=d2=…=dk=0IntroductoryEconometrics39
TheBreuschnTestforHSKUnderthenullhypothesis,itisoftenreasonabletoassumethattheerrorvisindependentofx1,…,xk.TheneitherForLMstatisticsforoverallsignificanceoftheindependentvariablesinexplainingu2canbeusedtotestHSK.Theyareasymptoticallyvalidtestsinceu2isnotnormallydistributedinthesample.
IntroductoryEconometrics40TheBreusch-PaganTest
Don’tobservetheerror,butcanestimateitwiththeresidualsfromtheOLSregressionAfterregressingtheresidualssquaredonallofthex’s,canusetheR2toformanForLMtestTheFstatisticisjustthereportedFstatisticforoverallsignificanceoftheregression,F=[R2/k]/[(1–
R2)/(n–k–1)],whichisdistributedFk,n–k-1TheLMstatisticisLM=nR2,whichisdistributedc2kIntroductoryEconometrics41TheWhiteTest
TheBreusch-PagantestwilldetectanylinearformsofheteroskedasticityTheWhitetestallowsfornonlinearitiesbyusingsquaresandcrossproductsofallthex’sStilljustusinganForLMtotestwhetherallthexj,xj2,andxjxharejointlysignificantIntroductoryEconometrics42
TheWhiteTestforHSKThiscangettobeunwieldyprettyquickly.Forexample,ifwehavethreeexplanatoryvariables,x1,x2,and
x3thentheWhitetestwillhave9restrictions:3onlevels,3onsquares,and3oncross-products.Withsmallsamples,degreesoffreedomwillsoonberunoutwithmoreregressors.
IntroductoryEconometrics43AlternateformoftheWhitetest
ConsiderthatthefittedvaluesfromOLS,?,areafunctionofallthex’sThus,?2willbeafunctionofthesquaresandcrossproductsand?and?2canproxyforallofthexj,xj2,andxjxh,soRegresstheresidualssquaredon?and?2andusetheR2toformanForLMstatisticNoteonlytestingfor2restrictionsnowIntroductoryEconometrics44
B-P檢驗(yàn)和White檢驗(yàn)的stata命令regyx1x2…xkestathettest(B-P檢驗(yàn))estatimtest,white(white檢驗(yàn))Example8.4,8.5(hprice.dta)IntroductoryEconometrics45IntroductoryEconometrics46IntroductoryEconometrics47
FinalcommentsaboutHSKtestsItispossiblefortheHSKtesttorejectthenullwhenimportantvariablesareomitted,eventhoughthetruthisthereisnoHSK.
HSKcouldindicatemisspecification,therefore,whenpossible,thespecificationtestsshouldbecarriedoutearlierthantheHSKtest.IntroductoryEconometrics48WeightedLeastSquares
Whileit’salwayspossibletoestimaterobuststandarderrorsforOLSestimates,ifweknowsomethingaboutthespecificformoftheheteroskedasticity,wecanobtainmoreefficientestimatesthanOLSThebasicideaisgoingtobetotransformthemodelintoonethathashomoskedasticerrors–calledweightedleastsquaresIntroductoryEconometrics49Caseofformbeingknownuptoamultiplicativeconstant
SupposetheheteroskedasticitycanbemodeledasVar(u|x)=s2h(x),wherethetrickistofigureoutwhath(x)≡
hilookslikeE(ui/√hi|x)=0,becausehiisonlyafunctionofx,andVar(ui/√hi|x)=s2,becauseweknowVar(u|x)=s2hiSo,ifwedividedourwholeequationby√hiwewouldhaveamodelwheretheerrorishomoskedasticIntroductoryEconometrics50GeneralizedLeastSquares
EstimatingthetransformedequationbyOLSisanexampleofgeneralizedleastsquares(GLS)GLSwillbeBLUEinthiscaseGLSisaweightedleastsquares(WLS)procedurewhereeachsquaredresidualisweightedbytheinverseofVar(ui|xi)IntroductoryEconometrics51WeightedLeastSquares
WhileitisintuitivetoseewhyperformingOLSonatransformedequationisappropriate,itcanbetedioustodothetransformationWeightedleastsquaresisawayofgettingthesamething,withoutthetransformationIdeaistominimizetheweightedsumofsquares(weightedby1/hi)IntroductoryEconometrics52
WeightedLeastSquaresIntroductoryEconometrics53MoreonWLS
WLSisgreatifweknowwhatVar(ui|xi)lookslikeInmostcases,won’tknowformofheteroskedasticityExamplewheredoisifdataisaggregated,butmodelisindividuallevelWanttoweighteachaggregateobservationbytheinverseofthenumberofindividualsIntroductoryEconometrics54FeasibleGLS
Moretypicalisthecasewhereyoudon’tknowtheformoftheheteroskedasticityInthiscase,youneedtoestimateh(xi)Typically,westartwiththeassumptionofafairlyflexiblemodel,suchasVar(u|x)=s2exp(d0+d1x1+…+dkxk)Sincewedon’tknowthed,mustestimateIntroductoryEconometrics55FeasibleGLS(continued)
Ourassumptionimpliesthatu2=s2exp(d0+d1x1+…+dkxk)vWhereE(v|x)=1,thenifE(v)=1ln(u2)=a0
+d1x1+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年初中英文口試題及答案
- 2025年美團(tuán)面試題及答案
- 家政學(xué)習(xí)資料復(fù)習(xí)測試卷附答案
- 2025年美術(shù)學(xué)往年考試題及答案
- 2025年貨代銷售面試試題及答案
- 2025年最難色感測試題及答案
- 2025年國考調(diào)查面試題及答案
- 2025年青海中考?xì)v史試題及答案
- 2025年數(shù)據(jù)庫的原理試題及答案
- 2025年中醫(yī)內(nèi)科學(xué)試題及答案
- 2024年蘇州高博軟件技術(shù)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 2025年上半年江蘇省無錫瀚瀾水利科技限公司招聘7人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 我的家鄉(xiāng)衢州
- 公交車預(yù)防春困
- 法務(wù)助理實(shí)習(xí)報(bào)告
- 2025幼兒園疫情報(bào)告制度及流程
- GB/T 41869.3-2024光學(xué)和光子學(xué)微透鏡陣列第3部分:光學(xué)特性測試方法
- 2024年9月時(shí)事政治試題帶答案
- 食品經(jīng)營放心承諾書模板
- 空調(diào)安裝及維修的注意事項(xiàng)
- 苗圃建設(shè)項(xiàng)目施工組織設(shè)計(jì)范本
評論
0/150
提交評論