2024屆新疆生產(chǎn)建設(shè)兵團27團中學(xué)九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第1頁
2024屆新疆生產(chǎn)建設(shè)兵團27團中學(xué)九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第2頁
2024屆新疆生產(chǎn)建設(shè)兵團27團中學(xué)九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第3頁
2024屆新疆生產(chǎn)建設(shè)兵團27團中學(xué)九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第4頁
2024屆新疆生產(chǎn)建設(shè)兵團27團中學(xué)九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆新疆生產(chǎn)建設(shè)兵團27團中學(xué)九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,點C是線段AB的黃金分割點(AC>BC),下列結(jié)論錯誤的是()A. B. C. D.2.函數(shù)的圖象如圖所示,那么函數(shù)的圖象大致是()A. B. C. D.3.一個扇形半徑30cm,圓心角120°,用它作一個圓錐的側(cè)面,則圓錐底面半徑為()A.5cm B.10cm C.20cm D.30cm4.如圖,已知DE∥BC,CD和BE相交于點O,S△DOE:S△COB=4:9,則AE:EC為()A.2:1 B.2:3 C.4:9 D.5:45.如圖,⊙O的半徑OA等于5,半徑OC與弦AB垂直,垂足為D,若OD=3,則弦AB的長為()A.10 B.8 C.6 D.46.如圖,AD是△ABC的中線,點E在AD上,AD=4DE,連接BE并延長交AC于點F,則AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:37.下列圖形中是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.8.在下列圖形中,是中心對稱圖形而不是軸對稱圖形的是()A.圓 B.等邊三角形 C.梯形 D.平行四邊形9.如圖,已知⊙O的半徑為13,弦AB長為24,則點O到AB的距離是()A.6 B.5 C.4 D.310.的值等于()A. B. C. D.二、填空題(每小題3分,共24分)11.計算:__________.12.如圖,在以A為直角頂點的等腰直角三角形紙片ABC中,將B角折起,使點B落在AC邊上的點D(不與點A,C重合)處,折痕是EF.如圖1,當(dāng)CD=AC時,tanα1=;如圖2,當(dāng)CD=AC時,tanα2=;如圖3,當(dāng)CD=AC時,tanα3=;……依此類推,當(dāng)CD=AC(n為正整數(shù))時,tanαn=_____.13.圓心角是60°且半徑為2的扇形面積是______14.在Rt△ABC中,∠C=90°,如果cosB=,BC=4,那么AB的長為________.15.如圖,在四邊形ABCD中,∠ABC=90°,對角線AC、BD交于點O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.16.某商場購進一批單價為16元的日用品,若按每件20元的價格銷售,每月能賣出360件,若按每件25元的價格銷售,每月能賣210件,假定每月銷售件數(shù)y(件)與每件的銷售價格x(元/件)之間滿足一次函數(shù).在商品不積壓且不考慮其他因素的條件下,銷售價格定為______元時,才能使每月的毛利潤w最大,每月的最大毛利潤是為_______元.17.分解因式:a2b﹣b3=.18.如圖是甲、乙兩人同一地點出發(fā)后,路程隨時間變化的圖象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______時相遇;(3)路程為150千米時,甲行駛了______小時,乙行駛了______小時.三、解答題(共66分)19.(10分)如圖,拋物線與軸交于、兩點,與軸交于點,且.(1)求拋物線的解析式及頂點的坐標(biāo);(2)判斷的形狀,證明你的結(jié)論;(3)點是拋物線對稱軸上的一個動點,當(dāng)周長最小時,求點的坐標(biāo)及的最小周長.20.(6分)解下列方程:(1);(2).21.(6分)如圖,和都是等腰直角三角形,,的頂點與的斜邊的中點重合,將繞點旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段與線段相交于點,射線與線段相交于點,與射線相交于點.(1)求證:;(2)求證:平分;(3)當(dāng),,求的長.22.(8分)如圖1,在平面直角坐標(biāo)系xOy中,已知△ABC,∠ABC=90°,頂點A在第一象限,B,C在x軸的正半軸上(C在B的右側(cè)),BC=2,AB=2,△ADC與△ABC關(guān)于AC所在的直線對稱.(1)當(dāng)OB=2時,求點D的坐標(biāo);(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.23.(8分)已知拋物線y=ax2+bx+c經(jīng)過點A(﹣2,0),B(3,0),與y軸負(fù)半軸交于點C,且OC=OB.(1)求拋物線的解析式;(2)在y軸負(fù)半軸上存在一點D,使∠CBD=∠ADC,求點D的坐標(biāo);(3)點D關(guān)于直線BC的對稱點為D′,將拋物線y=ax2+bx+c向下平移h個單位,與線段DD′只有一個交點,直接寫出h的取值范圍.24.(8分)小王、小張和小梅打算各自隨機選擇本周六的上午或下午去高郵湖的湖上花海去踏青郊游.(1)小王和小張都在本周六上午去踏青郊游的概率為_______;(2)求他們?nèi)嗽谕粋€半天去踏青郊游的概率.25.(10分)如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設(shè)運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設(shè)△AMN的面積為S,求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當(dāng)四邊形MNPC為菱形時,求t的值;⑶當(dāng)t的值為,△AMN是等腰三角形.26.(10分)觀察下列等式:第個等式為:;第個等式為:;第個等式為:;…根據(jù)等式所反映的規(guī)律,解答下列問題:(1)猜想:第個等式為_______________________________(用含的代數(shù)式表示);(2)根據(jù)你的猜想,計算:.

參考答案一、選擇題(每小題3分,共30分)1、B【解題分析】∵AC>BC,∴AC是較長的線段,根據(jù)黃金分割的定義可知:=≈0.618,故A、C、D正確,不符合題意;AC2=AB?BC,故B錯誤,符合題意;故選B.2、D【解題分析】首先由反比例函數(shù)的圖象位于第二、四象限,得出k<0,則-k>0,所以一次函數(shù)圖象經(jīng)過第二四象限且與y軸正半軸相交.【題目詳解】解:反比例函數(shù)的圖象在第二、四象限,函數(shù)的圖象應(yīng)經(jīng)過第一、二、四象限.故選D.【題目點撥】本題考查的知識點:

(1)反比例函數(shù)的圖象是雙曲線,當(dāng)k<0時,它的兩個分支分別位于第二、四象限.

(2)一次函數(shù)y=kx+b的圖象當(dāng)k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限.3、B【解題分析】試題解析:設(shè)此圓錐的底面半徑為r,2πr=,r=10cm故選B.考點:弧長的計算.4、A【解題分析】試題解析:∵ED∥BC,故選A.點睛:相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.5、B【解題分析】試題分析:由OC與AB垂直,利用垂徑定理得到D為AB的中點,在直角三角形AOD中,由OA與OD的長,利用勾股定理求出AD的長,由AB=2AD即可求出AB的長.∵OC⊥AB,∴D為AB的中點,即AD=BD=0.5AB,在Rt△AOD中,OA=5,OD=3,根據(jù)勾股定理得:AD=4則AB=2AD=1.故選B.考點:垂徑定理點評:此題考查了垂徑定理,以及勾股定理,熟練掌握垂徑定理是解本題的關(guān)鍵6、A【分析】過點D作DG∥AC,根據(jù)平行線分線段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【題目詳解】解:過點D作DG∥AC,與BF交于點G.

∵AD=4DE,

∴AE=3DE,

∵AD是△ABC的中線,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.

故選:A.【題目點撥】本題考查了平行線分線段成比例定理,正確作出輔助線充分利用對應(yīng)線段成比例的性質(zhì)是解題的關(guān)鍵.7、A【分析】根據(jù)中心對稱圖形和軸對稱圖形的性質(zhì)對各項進行判斷即可.【題目詳解】根據(jù)中心對稱圖形和軸對稱圖形的性質(zhì),只有下圖符合故答案為:A.【題目點撥】本題考查了中心對稱圖形和軸對稱圖形,掌握中心對稱圖形和軸對稱圖形的定義和性質(zhì)是解題的關(guān)鍵.8、D【解題分析】解:選項A、是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;選項B、不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;選項C、不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;選項D、是中心對稱圖形,不是軸對稱圖形,故此選項正確;故選D.9、B【解題分析】過點O作OC⊥AB,垂足為C,則有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即點O到AB的距離是5.10、B【解題分析】根據(jù)特殊角的三角函數(shù)值求解.【題目詳解】.

故選:B.【題目點撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是熟記幾個特殊角的三角函數(shù)值.二、填空題(每小題3分,共24分)11、【分析】本題涉及零指數(shù)冪、負(fù)整數(shù)指數(shù)冪、二次根式化簡三個考點,在計算時需要針對每個考點分別進行計算,然后再進行加減運算即可.【題目詳解】3-4-1=-2.故答案為:-2.【題目點撥】本題考查的是實數(shù)的運算能力,注意要正確掌握運算順序及運算法則.12、【分析】探究規(guī)律,利用規(guī)律解決問題即可.【題目詳解】觀察可知,正切值的分子是3,5,7,9,…,2n+1,分母與勾股數(shù)有關(guān)系,分別是勾股數(shù)3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中間一個.當(dāng),將故答案為:【題目點撥】本題考查規(guī)律型問題,解題的關(guān)鍵是學(xué)會探究規(guī)律的方法,屬于中考??碱}型.13、【解題分析】由扇形面積公式得:S=故答案是:.14、6【分析】根據(jù)題意cosB=,得到AB=,代入計算即可.【題目詳解】解:Rt△ABC中,∠C=90°,cosB=,可知cosB=得到AB=,又知BC=4,代入得到AB=故填6.【題目點撥】本題考查解直角三角形相關(guān),根據(jù)銳角三角函數(shù)進行分析求解.15、【分析】過點A作AE⊥BD,由AAS得△AOE≌△COD,從而得CD=AE=3,由勾股定理得DB=4,易證△ABE∽△BCD,得,進而即可求解.【題目詳解】過點A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB==4,∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,又∵∠CDB=∠AEB=90°,∴△ABE∽△BCD,∴,∴,∴AB=.故答案為:.【題目點撥】本題主要考查相似三角形的判定和性質(zhì)定理,全等三角形的判定和性質(zhì)以及勾股定理,添加輔助線構(gòu)造全等三角形,是解題的關(guān)鍵.16、241【分析】本題首先通過待定系數(shù)法求解y與x的關(guān)系式,繼而根據(jù)利潤公式求解二次函數(shù)表達(dá)式,最后根據(jù)二次函數(shù)性質(zhì)求解本題.【題目詳解】由題意假設(shè),將,代入一次函數(shù)可得:,求解上述方程組得:,則,∵,∴,∴,又因為商品進價為16元,故.銷售利潤,整理上式可得:銷售利潤,由二次函數(shù)性質(zhì)可得:當(dāng)時,取最大值為1.故當(dāng)銷售單價為24時,每月最大毛利潤為1元.【題目點撥】本題考查二次函數(shù)的利潤問題,解題關(guān)鍵在于理清題意,按照題目要求,求解二次函數(shù)表達(dá)式,最后根據(jù)二次函數(shù)性質(zhì)求解此類型題目.17、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式進行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【題目詳解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案為b(a+b)(a﹣b).18、(1)、小于;(2)、6;(3)、9、4【解題分析】試題分析:根據(jù)圖像可得:甲的速度小于乙的速度;兩人在6時相遇;甲行駛了9小時,乙行駛了4小時.考點:函數(shù)圖像的應(yīng)用三、解答題(共66分)19、(1),D;(2)是直角三角形,見解析;(3),.【分析】(1)直接將(?1,0),代入解析式進而得出答案,再利用配方法求出函數(shù)頂點坐標(biāo);(2)分別求出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,進而利用勾股定理的逆定理得出即可;(3)利用軸對稱最短路線求法得出M點位置,求出直線的解析式,可得M點坐標(biāo),然后易求此時△ACM的周長.【題目詳解】解:(1)∵點在拋物線上,∴,解得:.∴拋物線的解析式為,∵,∴頂點的坐標(biāo)為:;(2)是直角三角形,證明:當(dāng)時,∴,即,當(dāng)時,,解得:,,∴,∴,,,∵,,,∴,∴是直角三角形;(3)如圖所示:BC與對稱軸交于點M,連接,根據(jù)軸對稱性及兩點之間線段最短可知,此時的值最小,即周長最小,設(shè)直線解析式為:,則,解得:,故直線的解析式為:,∵拋物線對稱軸為∴當(dāng)時,,∴,最小周長是:.【題目點撥】此題主要考查了二次函數(shù)綜合應(yīng)用、利用軸對稱求最短路線以及勾股定理的逆定理等知識,得出M點位置是解題關(guān)鍵.20、(1);(2)【分析】(1)方程常數(shù)項移到右邊,兩邊加上一次項系數(shù)一半的平方,利用完全平方公式變形,開方即可求出解;(2)移項,提公因式,利用因式分解法即可求解.【題目詳解】(1),移項得:,配方得:,即,開平方得:,∴;(2)移項得:,

分解因式得:,∴或,∴.【題目點撥】本題考查了解一元二次方程-配方法和因式分解法,能正確運用配方法和因式分解法解方程是解此題的關(guān)鍵.21、(1)詳見解析;(2)詳見解析;(3)5.【分析】(1)由△ABC和△DEF是兩個等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性質(zhì),即可得∠BEP=∠EQC,則可證得△BPE∽△CEQ;(2)只要證明△BPE∽△EPQ,可得∠BEP=∠EQP,且∠BEP=∠CQE,可得結(jié)論;(3)由相似三角形的性質(zhì)可求BE=3=EC,可求AP=4,AQ=3,即可求PQ的長.【題目詳解】解:(1)和是兩個等腰直角三角形,,,即,,,,(2),,,,,,,且,,平分(3),且,,,,,,,,.【題目點撥】本題考查相似形綜合題、等腰直角三角形的性質(zhì),相似三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.22、(1)點D坐標(biāo)為(5,);(2)OB=2;(2)k=12.【解題分析】分析:(1)如圖1中,作DE⊥x軸于E,解直角三角形清楚DE,CE即可解決問題;(2)設(shè)OB=a,則點A的坐標(biāo)(a,2),由題意CE=1.DE=,可得D(2+a,),點A、D在同一反比例函數(shù)圖象上,可得2a=(2+a),求出a的值即可;(2)分兩種情形:①如圖2中,當(dāng)∠PA1D=90°時.②如圖2中,當(dāng)∠PDA1=90°時.分別構(gòu)建方程解決問題即可;詳解:(1)如圖1中,作DE⊥x軸于E.∵∠ABC=90°,∴tan∠ACB=,∴∠ACB=60°,根據(jù)對稱性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°-60°=20°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴點D坐標(biāo)為(5,).(2)設(shè)OB=a,則點A的坐標(biāo)(a,2),由題意CE=1.DE=,可得D(2+a,),∵點A、D在同一反比例函數(shù)圖象上,∴2a=(2+a),∴a=2,∴OB=2.(2)存在.理由如下:①如圖2中,當(dāng)∠PA1D=90°時.∵AD∥PA1,∴∠ADA1=180°-∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=20°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,設(shè)P(m,),則D1(m+7,),∵P、A1在同一反比例函數(shù)圖象上,∴m=(m+7),解得m=2,∴P(2,),∴k=10.②如圖2中,當(dāng)∠PDA1=90°時.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴.∴,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=20°,∠ADK=∠KA1P=20°,∴∠APD=∠ADP=20°,∴AP=AD=2,AA1=6,設(shè)P(m,4),則D1(m+9,),∵P、A1在同一反比例函數(shù)圖象上,∴4m=(m+9),解得m=2,∴P(2,4),∴k=12.點睛:本題考查反比例函數(shù)綜合題、相似三角形的判定和性質(zhì)、銳角三角函數(shù)、解直角三角形、待定系數(shù)法等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會了可以參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.23、(1)y=x2﹣x﹣3;(2)D(0,﹣6);(3)3≤h≤1【分析】(1)OC=OB,則點C(0,﹣3),拋物線的表達(dá)式為:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,即可求解;(2)CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)過點C作x軸的平行線交DH的延長線于點D′,則D′(﹣3,﹣3);當(dāng)平移后的拋物線過點C時,拋物線與線段DD′有一個公共點,此時,h=3;當(dāng)平移后的拋物線過點D′時,拋物線與線段DD′有一個公共點,即可求解.【題目詳解】解:(1)OC=OB,則點C(0,﹣3),拋物線的表達(dá)式為:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故拋物線的表達(dá)式為:y=x2﹣x﹣3;(2)設(shè)CD=m,過點D作DH⊥BC交BC的延長線于點H,則CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),故點D(0,﹣6);(3)過點C作x軸的平行線交DH的延長線于點D′,則D′(﹣3,﹣3);平移后拋物線的表達(dá)式為:y=x2﹣x﹣3﹣h,當(dāng)平移后的拋物線過點C時,拋物線與線段DD′有一個公共點,此時,h=3;當(dāng)平移后的拋物線過點D′時,拋物線與線段DD′有一個公共點,即﹣3=×9+﹣h,解得:h=1,故3≤h≤1.【題目點撥】此題主要考查二次函數(shù)綜合,解題的關(guān)鍵是熟知待定系數(shù)法求解析式、三角函數(shù)的定義及二次函數(shù)平移的特點.24、(1);(2).【解題分析】1)根據(jù)題意,畫樹狀圖列出三人隨機選擇上午或下午去踏青游玩的所有等可能結(jié)果,找到小王和小張都在本周六上午去游玩的結(jié)果,根據(jù)概率公式計算可得;

2)由1)中樹狀圖,找到三人在同一個半天去游玩的結(jié)果,根據(jù)概率公式計算可得.【題目詳解】解:1)根據(jù)題意,畫樹狀圖如圖,

由樹狀圖知,小王和小張出去所選擇的時間段有4種等可能結(jié)果,其中都在本周六上午去踏青郊游的只有1種結(jié)果,

所以都在本周六上午去踏青郊游的概率為,

故答案為;

2)由樹狀圖可知,三人隨機選擇本周日的上午或下午去踏青郊游共有8種等可能結(jié)果,

其中他們?nèi)嗽谕粋€半天去踏青郊游的結(jié)果有上,上,上、下,下,下種,

他們?nèi)嗽谕粋€半天去踏青郊游的概率為.

本題考查的是用列表法或樹狀圖法求概率注意列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論