版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省鎮(zhèn)江市2024屆高一上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“0≤a≤1”是“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.冪函數(shù)的圖象過點,則()A. B.C. D.3.已知命題p:,,則()A., B.,C., D.,4.將函數(shù)的圖象向左平移個單位,再將圖象上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼?,那么所得圖象的函數(shù)表達式為A. B.C. D.5.根據(jù)表格中的數(shù)據(jù),可以判定函數(shù)的一個零點所在的區(qū)間為.A. B.C. D.6.不等式的解集為()A. B.C. D.7.已知函數(shù)是定義在上的奇函數(shù),在區(qū)間上單調(diào)遞增.若實數(shù)滿足,則實數(shù)的取值范圍是A B.C. D.8.已知定義在R上的奇函數(shù)滿足:當時,.則()A.2 B.1C.-1 D.-29.某圓的一條弦長等于半徑,則這條弦所對的圓心角為A. B.C. D.110.已知函數(shù)是定義在上的偶函數(shù),當時,,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則的最大值為________12.將函數(shù)圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式為________.13.我國采用的“密位制”是6000密位制,即將一個圓周分為6000等份,每一個等份是一個密位,那么120密位等于______rad14.潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,是指海水在天體(主要是月球和太陽)引潮力作用下所產(chǎn)生的周期性運動.習(xí)慣上把海面垂直方向漲落稱為潮汐,而海水在水平方向的流動稱為潮流.早先的人們?yōu)榱吮硎旧钡臅r刻,把發(fā)生在早晨的高潮叫潮,發(fā)生在晚上的高潮叫汐,這是潮汐名稱的由來.下表中給出了某市碼頭某一天水深與時間的關(guān)系(夜間零點開始計時).時刻(t)024681012水深(y)單位:米5.04.84.74.64.44.34.2時刻(t)141618202224水深(y)單位:米4.34.44.64.74.85.0用函數(shù)模型來近似地描述這些數(shù)據(jù),則________.15.已知冪函數(shù)圖像過點,則該冪函數(shù)的解析式是______________16.已知函數(shù)的定義域為R,,且函數(shù)為偶函數(shù),則的值為________,函數(shù)是________函數(shù)(從“奇”、“偶”、“非奇非偶”、“既奇又偶”中選填一個).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱函數(shù)為“局部中心函數(shù)”.(1)已知二次函數(shù),試判斷是否為“局部中心函數(shù)”.并說明理由;(2)若是定義域為R上的“局部中心函數(shù)”,求實數(shù)m的取值范圍.18.在①;②“”是“”的充分條件:③“”是“”的必要條件,在這三個條件中任選一個,補充到本題第(2)問的橫線處,求解下列問題問題:已知集合,(1)當時,求;(2)若________,求實數(shù)的取值范圍注:如果選擇多個條件分別解答,按第一個解答計分19.(1)求值:;(2)已知,化簡求值:20.已知函數(shù)(1)求函數(shù)的最小正周期和在上的值域;(2)若,求的值21.已知函數(shù).(1)判斷在區(qū)間上的單調(diào)性,并用定義證明;(2)判斷奇偶性,并求在區(qū)間上的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】先根據(jù)“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立”得0<a<1【題目詳解】設(shè)p:“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立則由p知一元二次函數(shù)y=x2-2ax+a的圖象開口向上,且所以對于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1?所以“0≤a≤1”是“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立”故選:B.【題目點撥】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若p是q的必要不充分條件,則q對應(yīng)集合是p對應(yīng)集合的真子集;(2)若p是q充分不必要條件,則p對應(yīng)集合是q對應(yīng)集合的真子集;(3)若p是q的充分必要條件,則p對應(yīng)集合與q對應(yīng)集合相等;(4)若p是q的既不充分又不必要條件,q對的集合與p對應(yīng)集合互不包含2、C【解題分析】將點代入中,求解的值可得,再求即可.【題目詳解】因為冪函數(shù)的圖象過點,所以有:,即.所以,故,故選:C.3、A【解題分析】直接利用全稱命題的否定即可得到結(jié)論【題目詳解】因為命題p:,,所以:,.故選:A.4、B【解題分析】將函數(shù)的圖象向左平移個單位后所得圖象對應(yīng)的的解析式為;再將圖象上各點縱坐標不變,橫坐標變?yōu)樵瓉淼?,所得圖象對應(yīng)的解析式為.選B5、D【解題分析】函數(shù),滿足.由零點存在定理可知函數(shù)的一個零點所在的區(qū)間為.故選D.點睛:函數(shù)的零點問題,常根據(jù)零點存在性定理來判斷,如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b)使得f(c)=0,
這個c也就是方程f(x)=0的根.由此可判斷根所在區(qū)間.6、D【解題分析】化簡不等式并求解即可.【題目詳解】將不等式變形為,解此不等式得或.因此,不等式解集為故選:D【題目點撥】本題考查一元二次不等式解法,考查學(xué)生計算能力,屬于基礎(chǔ)題.7、C【解題分析】是定義在上的奇函數(shù),在上單調(diào)遞增,解得故選8、D【解題分析】由奇函數(shù)定義得,從而求得,然后由計算【題目詳解】由于函數(shù)是定義在R上的奇函數(shù),所以,而當時,,所以,所以當時,,故.由于為奇函數(shù),故.故選:D.【題目點撥】本題考查奇函數(shù)的定義,掌握奇函數(shù)的概念是解題關(guān)鍵9、C【解題分析】直接利用已知條件,轉(zhuǎn)化求解弦所對的圓心角即可.【題目詳解】圓的一條弦長等于半徑,故由此弦和兩條半徑構(gòu)成的三角形是等邊三角形,所以弦所對的圓心角為.故選C.【題目點撥】本題考查扇形圓心角的求法,是基本知識的考查.10、D【解題分析】由函數(shù)是定義在上的偶函數(shù),借助奇偶性,將問題轉(zhuǎn)化到已知區(qū)間上,再求函數(shù)值【題目詳解】因為是定義在上的偶函數(shù),且當時,,所以,選擇D【題目點撥】已知函數(shù)的奇偶性問題,常根據(jù)函數(shù)的奇偶性,將問題進行轉(zhuǎn)化,轉(zhuǎn)化到條件給出的范圍再進行求解二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】化簡,根據(jù)題意結(jié)合基本不等式,取得,即可求解.【題目詳解】由題意,實數(shù),且,又由,當且僅當時,即時,等號成立,所以,即的最大值為.故答案為:.12、.【解題分析】由題意利用函數(shù)的圖象變換規(guī)律,即可得出結(jié)論.【題目詳解】將函數(shù)圖象上所有的點向右平行移動個單位長度,可得函數(shù)為,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),可得函數(shù)為.故答案為:.13、##【解題分析】根據(jù)已知定義,結(jié)合弧度制的定義進行求解即可.【題目詳解】設(shè)120密位等于,所以有,故答案為:14、##【解題分析】根據(jù)題意條件,結(jié)合表內(nèi)給的數(shù)據(jù),通過一天內(nèi)水深的最大值和最小值,即可列出關(guān)于、之間的關(guān)系,通過解方程解出、,即可求解出答案.【題目詳解】由表中某市碼頭某一天水深與時間的關(guān)系近似為函數(shù),從表中數(shù)據(jù)可知,函數(shù)的最大值為5.0,最小值為4.2,所以,解得,,故.故答案為:或?qū)懗?15、【解題分析】設(shè)出冪函數(shù)的函數(shù)表達,然后代點計算即可.【題目詳解】設(shè),因為,所以,所以函數(shù)的解析式是故答案為:.16、①.7②.奇【解題分析】利用函數(shù)的奇偶性以及奇偶性定義即可求解.【題目詳解】函數(shù)為偶函數(shù),由,則,所以,所以,,定義域為,定義域關(guān)于原點對稱.因為,所以,所以函數(shù)為奇函數(shù).故答案為:7;奇三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)為“局部中心函數(shù)”,理由見解析;(2).【解題分析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為上的“局部中心函數(shù)”可轉(zhuǎn)化為方程有解,再利用整體思路得出結(jié)果.【題目詳解】解:(1)由題意,(),所以,,當時,解得:,由于,所以,所以為“局部中心函數(shù)”.(2)因為是定義域為上的“局部中心函數(shù)”,所以方程有解,即在上有解,整理得:,令,,故題意轉(zhuǎn)化為在上有解,設(shè)函數(shù),當時,在上有解,即,解得:;當時,則需要滿足才能使在上有解,解得:,綜上:,即實數(shù)m的取值范圍.18、(1)(2)【解題分析】(1)首先解一元二次不等式得到集合,再求出集合,最后根據(jù)交集的定義計算可得;(2)根據(jù)所選條件均可得到,即可得到不等式,解得即可;【小問1詳解】解:由,解得,所以,當時,,所以【小問2詳解】解:若選①,則,所以,解得,即;若選②“”是“”的充分條件,所以,所以,解得,即;若選③“”是“”的必要條件,所以,所以,解得,即;19、(1);(2)【解題分析】(1)由指數(shù)和對數(shù)的運算公式直接化簡可得;(2)利用誘導(dǎo)公式化簡目標式,然后分子分母同時除以,將已知代入可得.【題目詳解】(1)原式(2)原式,∵,∴原式20、(1)見解析;(2)【解題分析】(1)由三角函數(shù)中的恒等變換應(yīng)用化簡函數(shù)解析式為f(x)=,進而得到函數(shù)的周期與值域;(2)由(1)知,利用二倍角余弦公式可得所求.【題目詳解】(1)由已知,,,∴又,則所以的最小正周期為在時的值域為.(2)由(1)知,所以則【題目點撥】本題考查三角函數(shù)的圖像與性質(zhì),考查三角函數(shù)的化簡求值,考查恒等變形能力,屬于中檔題.21、(1)函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 特殊教育班主任招聘合同
- 2024年工程承包商分包合同
- 內(nèi)鏡室醫(yī)療事故處理
- 餐飲廣場租賃協(xié)議樣本范本
- 建筑養(yǎng)護工程的施工合同客體是
- 市內(nèi)環(huán)保產(chǎn)業(yè)發(fā)展扶持政策
- 船舶制造設(shè)備管理辦法
- 動漫制作投標保密承諾書
- 環(huán)境質(zhì)量改善
- 換牌車牌租賃合同范本模板
- 核電站壽命評估技術(shù)
- 2023-2024學(xué)年遼寧省大連市名校聯(lián)盟八年級(上)聯(lián)考生物試卷(含解析)
- 有色金屬熔煉與鑄錠課件
- 安徽省蕪湖市七年級上學(xué)期語文期中試卷(含答案)
- 兩癌知識科普課件
- 食用菌現(xiàn)代高效農(nóng)業(yè)示范園區(qū)建設(shè)項目建議書
- 東營港加油、LNG加氣站工程環(huán)評報告表
- 2024年日歷(打印版每月一張)
- 車用動力電池回收利用 管理規(guī)范 第2部分:回收服務(wù)網(wǎng)點征求意見稿編制說明
- 新劍橋少兒英語第六冊全冊配套文本
- 科學(xué)預(yù)測方案
評論
0/150
提交評論