2024屆吉林省吉林市第五十五中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第1頁
2024屆吉林省吉林市第五十五中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第2頁
2024屆吉林省吉林市第五十五中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第3頁
2024屆吉林省吉林市第五十五中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第4頁
2024屆吉林省吉林市第五十五中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省吉林市第五十五中學高一數(shù)學第一學期期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,且,則A. B.C. D.2.已知直線的斜率為1,則直線的傾斜角為A. B.C. D.3.函數(shù)部分圖像如圖所示,則的值為()A. B.C. D.4.設a,bR,,則()A. B.C. D.5.已知a=log20.3,b=20.3,c=0.30.3,則a,b,c三者的大小關系是()A. B.C. D.6.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.繆天榮,浙江人,著名眼科專家、我國眼視光學的開拓者.上世紀年代,我國使用“國際標準視力表”檢測視力,采用“小數(shù)記錄法”記錄視力數(shù)據(jù),繆天榮發(fā)現(xiàn)其中存在不少缺陷.經過年苦心研究,年,他成功研制出“對數(shù)視力表”及“分記錄法”.這是一種既符合視力生理又便于統(tǒng)計和計算的視力檢測系統(tǒng),使中國的眼視光學研究站在了世界的巔峰.“分記錄法”將視力和視角(單位:)設定為對數(shù)關系:.如圖,標準對數(shù)視力表中最大視標的視角為,則對應的視力為.若小明能看清的某行視標的大小是最大視標的(相應的視角為),取,則其視力用“分記錄法”記錄()A. B.C. D.8.已知第二象限角的終邊上有異于原點的兩點,,且,若,則的最小值為()A. B.3C. D.49.設a>0,b>0,化簡的結果是()A. B.C. D.-3a10.如圖,在正四棱柱中,,點為棱的中點,過,,三點的平面截正四棱柱所得的截面面積為()A.2 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.三條直線兩兩相交,它們可以確定的平面有______個.12.___________13.已知且,則的最小值為______________14.若兩平行直線2x+y-4=0與y=-2x-k-2的距離不大于,則k的取值范圍是____15.下列說法中,所有正確說法的序號是__________①終邊落在軸上角的集合是;②函數(shù)圖象一個對稱中心是;③函數(shù)在第一象限是增函數(shù);④為了得到函數(shù)的圖象,只需把函數(shù)的圖象向右平移個單位長度16.已知則_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(且).(1)判斷函數(shù)的奇偶性,并證明;(2)若,不等式在上恒成立,求實數(shù)的取值范圍;(3)若且在上最小值為,求m的值.18.已知圓,點是直線上的一動點,過點作圓的切線,切點為.(1)當切線的長度為時,求線段PM長度.(2)若的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由;(3)求線段長度的最小值19.計算下列各式的值(1)(2)20.如圖,在三棱錐中,.(1)畫出二面角的平面角,并求它的度數(shù);(2)求三棱錐的體積.21.提高隧道的車輛通行能力可改善附近路段高峰期間的交通狀況.在一般情況下,隧道內的車流速度(單位:千米/小時)和車流密度(單位:輛/千米)滿足關系式:.研究表明:當隧道內的車流密度達到輛/千米時造成堵塞,此時車流速度是千米/小時.(1)若車流速度不小于千米/小時,求車流密度的取值范圍;(2)隧道內的車流量(單位時間內通過隧道的車輛數(shù),單位:輛/小時)滿足,求隧道內車流量的最大值(精確到輛/小時),并指出當車流量最大時的車流密度.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】分析:直接利用向量垂直的坐標表示得到m的方程,即得m的值.詳解:∵,∴,故答案為D.點睛:(1)本題主要考查向量垂直的坐標表示,意在考查學生對該這些基礎知識的掌握水平.(2)設=,=,則2、A【解題分析】設直線的傾斜角為,則由直線的斜率,則故故選3、C【解題分析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【題目詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【題目點撥】本題考查了三角函數(shù)的圖象與性質,屬于中檔題.4、D【解題分析】利用不等式的基本性質及作差法,對結論逐一分析,選出正確結論即可.【題目詳解】因為,則,所以,即,故A錯誤;因為,所以,則,所以,即,∴,,即,故B錯誤;∵由,因,所以,又因為,所以,即,故C錯誤;由可得,,故D正確.故選:D.5、D【解題分析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調性即可得出大小關系【題目詳解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),則a,b,c三者的大小關系是b>c>a.故選:D【題目點撥】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題6、A【解題分析】解兩個不等式,利用集合的包含關系判斷可得出結論.【題目詳解】解不等式可得,解不等式可得或,因為或,因此,“”是“”的充分不必要條件.故選:A.7、C【解題分析】將代入,求出的值,即可得解.【題目詳解】將代入函數(shù)解析式可得.故選:C.8、B【解題分析】根據(jù),得到,從而得到,進而得到,再利用“1”的代換以及基本不等式求解.【題目詳解】解:因為,所以,又第二象限角的終邊上有異于原點的兩點,,所以,則,因為,所以,所以,當且僅當,即時,等號成立,故選:B9、D【解題分析】由分數(shù)指數(shù)冪的運算性質可得結果.【題目詳解】因為,,所以.故選:D.10、D【解題分析】根據(jù)題意畫出截面,得到截面為菱形,從而可求出截面的面積.【題目詳解】取的中點,的中點,連接,因為該幾何體為正四棱柱,∴故四邊形為平行四邊形,所以,又,∴,同理,且,所以過,,三點平面截正四棱柱所得的截面為菱形,所以該菱形的面積為.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、1或3【解題分析】利用平面的基本性質及推論即可求出.【題目詳解】設三條直線為,不妨設直線,故直線與確定一個平面,(1)若直線在平面內,則直線確定一個平面;(2)若直線不在平面內,則直線確定三個平面;故答案為:1或3;12、【解題分析】利用、兩角和的正弦展開式進行化簡可得答案.【題目詳解】故答案為:.13、9【解題分析】因為且,所以取得等號,故函數(shù)的最小值為9.,答案為9.14、【解題分析】利用平行線之間的距離及兩直線不重合列出不等式,求解即可【題目詳解】y=﹣2x﹣k﹣2的一般式方程為2x+y+k+2=0,則兩平行直線的距離d得,|k+6|≤5,解得﹣11≤k≤﹣1,當k+2=﹣4,即k=﹣6,此時兩直線重合,所以k的取值范圍是故答案為【題目點撥】本題考查了兩平行直線間的距離,考查兩直線平行的條件,考查計算能力,屬于基礎題.15、②④【解題分析】當時,,終邊不在軸上,①錯誤;因為,所以圖象的一個對稱中心是,②正確;函數(shù)的單調性相對區(qū)間而言,不能說在象限內單調,③錯誤;函數(shù)的圖象向右平移個單位長度,得到的圖象,④正確.故填②④16、【解題分析】因為,所以三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)為奇函數(shù),證明見解析.(2).(3).【解題分析】(1)根據(jù)函數(shù)的奇偶性的定義可得證;(2)由(1)得出是定義域為的奇函數(shù),再判斷出是上的單調遞增,進而轉化為,進而可求解;(3)利用,可得到,所以,令,則,進而對二次函數(shù)對稱軸討論求得最值即可求出的值.【小問1詳解】解:函數(shù)的定義域為,又,∴為奇函數(shù).【小問2詳解】解:,∵,∴,或(舍).∴單調遞增.又∵為奇函數(shù),定義域為R,∴,∴所以不等式等價于,,,∴.故的取值范圍為.【小問3詳解】解:,解得(舍),,令,∵,∴,,當時,,解得(舍),當時,,解得(舍),綜上,.18、(1)8(2)(3)【解題分析】(1)根據(jù)圓中切線長的性質得到;(2)設,經過A,P,M三點的圓N以MP為直徑,圓N的方程為化簡求值即可;(3)(Ⅲ)求出點M到直線AB的距離,利用勾股定理,即可求線段AB長度的最小值.解析:(1)由題意知,圓M的半徑r=4,圓心M(0,6),設PA是圓的一條切線,(2)設,經過A,P,M三點的圓N以MP為直徑,圓心,半徑為得圓N的方程為即,有由,解得或圓過定點(3)圓N的方程,即①圓即②②-①得:圓M與圓N相交弦AB所在直線方程為:圓心M(0,6)到直線AB的距離弦長當時,線段AB長度有最小值.點睛:這個題目考查的是直線和圓的位置關系,一般直線和圓的題很多情況下是利用數(shù)形結合來解決的,聯(lián)立的時候較少;再者在求圓上的點到直線或者定點的距離時,一般是轉化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;圓的問題經常應用的性質有垂徑定理的應用,切線長定理的應用.19、(1);(2)1.【解題分析】(1)利用指數(shù)冪的運算法則、對數(shù)恒等式及對數(shù)運算性質,化簡計算即得;(2)利用同角關系式、輔助角公式可得原式,再利用誘導公式及二倍角公式,化簡計算即得.【小問1詳解】原式;【小問2詳解】原式.20、⑴⑵.【解題分析】(1)取中點,連接、,是二面角的平面角,進而求出此角度數(shù)即可;(2)利用等積法或割補法求體積.試題解析:⑴取中點,連接、,,,,且平面,平面,是二面角平面角.在直角三角形中,在直角三角形中,是等邊三角形,⑵解法1:,又平面,平面平面,且平面平面在平面內作于,則平面,即是三棱錐的高.在等邊中,,三棱錐的體積.解法2:平面在等邊中,的面積,三棱錐的體積.21、(1);(2)最大值約為3250輛/小時,車流密度約為87輛/千米.【解題分析】(1)把代入已知式求得,解不等式可得的范圍(2)由(1)求得函數(shù),分別利用函數(shù)的單調性和基本不等式分段求得最大值,比較可得【題目詳解】解:(1)由題意知當(輛/千米)時,(千米/小時),代入得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論