下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一種顧及多特征的建筑物變化檢測(cè)方法AbstractAsthedemandforbuildingmonitoringandassessmentincreases,thedetectionofbuildingchangeshasbecomeacrucialtask.Traditionalmethodsforbuildingchangedetectiontypicallyfocusonidentifyingdifferencesbetweentwoimagesofthesameareacapturedatdifferenttimes.However,thereareseveralchallengesassociatedwiththisapproach,asitcanbedifficulttodeterminewhatchangestoconsiderandhowtoclassifythem.Inthispaper,weproposeanewapproachtobuildingchangedetectionthattakesintoaccountmultiplefeaturesandcharacteristicsofthebuildinganditssurroundings.Ourapproachincludestheuseofhigh-resolutionsatelliteimages,lidardata,andgeographicinformation,andemploysmachinelearningalgorithmstoanalyzethesedata.WevalidateourapproachbyapplyingittoacasestudyofaresidentialareainHongKong,anddemonstratethatitcansuccessfullydetectbothsubtleandsignificantchangesinbuildingswhilemitigatingfalsepositives.IntroductionThedetectionofbuildingchangeshassubstantialimportanceforurbanplanning,disasterresponse,andenvironmentalmonitoring.Thetraditionalmethodsofbuildingchangedetectionrelyoncomparingtwoimagesofthesameareacapturedatdifferenttimes,andidentifyingdifferencesbetweenthem.Thesemethodsprovidesomeinsightregardingthespatialextentandnatureofthedetectedchanges.However,thesemethodstendtoproducelargenumbersoffalsepositivesandfalsenegatives,primarilybecausetheyfocusonthepreciselocalizationofchangeratherthanonitscharacterization.Moreover,buildingshavecomplexgeometriesandmaterialsthatposesignificantchallengestoimageanalysis.Therefore,itisessentialtodevelopamorerobustandcomprehensiveapproachtobuildingchangedetection.Theproposedapproachinvolvestakingintoaccountmultiplefeaturesandcharacteristicsofthebuildinganditssurroundings.Thisapproachisachievedthroughtheintegrationofhigh-resolutionsatelliteimages,lidardata,andgeographicinformationthatprovideacomprehensiveunderstandingofthebuilding.Moreover,throughtheuseofmachinelearningalgorithms,theapproachleveragesthecomputationalpowertoanalyzethesedatasetsanddetectbuildingchanges.Theobjectiveofthisworkistoprovideanewapproachforbuildingchangedetectionthatbettercharacterizesthechangeswhilereducingfalsepositives.MethodologyTheproposedapproachcombinesmultipledatasetsthatincludesatelliteimages,lidardata,andgeographicinformation.Thesatelliteimagesprovidethevisualrepresentationofthechangesthathaveoccurredinthebuilding.Thelidardataprovidesthethree-dimensionalrepresentationofthebuildinganditssurroundingarea,furtherimprovingtheaccuracyofthedetectedchanges.Geographicinformationincludesinformationaboutthebuildinglocation,land-use,historicalandenvironmentalconsiderations.Theapproachincorporatestwostagesofprocessing.Thefirststagefocusesondatapreparation,includingimagecalibration,radiometricnormalization,imageregistration,andsegmentation.Inthesecondstage,machinelearningalgorithmsareappliedtodifferentsetsoffeaturesthatincludespectral,textural,andgeometricinformationtodetectthechangesinthebuilding.Acriticalfeatureusedinthemachinelearningmodelsistheuseofunsupervisedlearningalgorithmsthatallowforthedetectionofsubtlechangesthatmaynotbeidentifiedbytraditionalmethods.Themodelsaretrainedandtestedonasub-regionofthestudyarea,andcomparedwithtraditionalchangedetectionmethodsbasedonimagedifferencing.ResultsandDiscussionTheperformanceoftheproposedapproachisevaluatedonacasestudyofaresidentialareainHongKong.Theapproachdetectedchangesinthebuildings,includingroofchanges,newconstructions,andalterationsinbuildingshapes.Theaccuracyofthemethodwasevaluatedusingground-truthdatacollectedfromthefieldsurvey.Theresultsshowedthattheproposedmethodhashigheraccuracyindetectingbuildingchangescomparedtotraditionalchangedetectionmethods.Inparticular,ithasahigherabilitytodetectsubtlechanges,mitigatingfalsepositivesresultingfromshadows,andseasonalvariations.Theproposedmethod,therefore,providesarobusttoolforbuildingchangedetection.ConclusionTheproposedapproachforbuildingchangedetectionprovidesnewinsightsandmethodsforurbanplanning,disasterresponse,andenvironmentalmonitoring.Themethoddemonstratedinthisworkintegratesmultiplefeaturesandcharacteristicsofthebuildinganditssurroundingsthroughtheuseofsatelliteimages,lidardata,andgeographicinformation.Additionally,themethodemploysmachinelea
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《百分?jǐn)?shù)的認(rèn)識(shí)》(說課稿)-2024-2025學(xué)年六年級(jí)上冊(cè)數(shù)學(xué)北師大版
- 干股激勵(lì)合同范本
- 轉(zhuǎn)讓股權(quán)合同范本
- 愛心捐贈(zèng)協(xié)議書范本
- 英文國(guó)際貿(mào)易合同范本
- 湘教版數(shù)學(xué)八年級(jí)上冊(cè)《1.4 分式的加法和減法》聽評(píng)課記錄
- 滬科版數(shù)學(xué)九年級(jí)下冊(cè)《圓的定義》聽評(píng)課記錄1
- 青島版八年級(jí)上冊(cè)數(shù)學(xué)聽評(píng)課記錄《4-2中位數(shù)》
- 重慶焊接鋼板倉(cāng)施工方案
- 《栽培小能手:2 不用土的栽培術(shù)》說課稿-2024-2025學(xué)年五年級(jí)上冊(cè)綜合實(shí)踐活動(dòng)滬科黔科版
- 必修3《政治與法治》 選擇題專練50題 含解析-備戰(zhàn)2025年高考政治考試易錯(cuò)題(新高考專用)
- 二零二五版電商企業(yè)兼職財(cái)務(wù)顧問雇用協(xié)議3篇
- 課題申報(bào)參考:流視角下社區(qū)生活圈的適老化評(píng)價(jià)與空間優(yōu)化研究-以沈陽(yáng)市為例
- 深圳2024-2025學(xué)年度四年級(jí)第一學(xué)期期末數(shù)學(xué)試題
- 《openEuler操作系統(tǒng)》考試復(fù)習(xí)題庫(kù)(含答案)
- 2024-2025學(xué)年成都市高新區(qū)七年級(jí)上英語(yǔ)期末考試題(含答案)
- 17J008擋土墻(重力式、衡重式、懸臂式)圖示圖集
- 《中南大學(xué)模板》課件
- 廣東省深圳市南山區(qū)2024-2025學(xué)年第一學(xué)期期末考試九年級(jí)英語(yǔ)試卷(含答案)
- T-CISA 402-2024 涂鍍產(chǎn)品 切口腐蝕試驗(yàn)方法
- 2024-2025學(xué)年人教版生物八年級(jí)上冊(cè)期末綜合測(cè)試卷
評(píng)論
0/150
提交評(píng)論