版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ormalityassumptionandstillperformapproximatelyvali
gmorethantwoperiodsofpaneldatacausesslightcomplica
ercise9.3isalsoagoodillustrationofthismethod.Irare
emandzero15/18atthegoingprice,whilesomewilldemandp
i12n
CHAPTER1
TEACHINGNOTES
YouhavesubstantiallatitudeaboutwhattoemphasizeinChapter1.
Ifinditusefultotalkabouttheeconomicsofcrimeexample(Example
1.1)andthewageexample(Example1.2)sothatstudentssee,attheoutset,thateconometricsislinkedtoeconomicreasoning,eveniftheeconomicsisnotcomplicatedtheory.
Iliketofamiliarizestudentswiththeimportantdatastructuresthatempiricaleconomistsuse,focusingprimarilyoncross-sectionalandtimeseriesdatasets,asthesearewhatIcoverinafirst-semestercourse.
Itisprobablyagoodideatomentionthegrowingimportanceofdatasetsthathavebothacross-sectionalandtimedimension.
Ispendalmostanentirelecturetalkingabouttheproblemsinherentindrawingcausalinferencesinthesocialsciences.Idothismostly
throughtheagriculturalyield,returntoeducation,andcrimeexamples.Theseexamplesalsocontrastexperimentalandnonexperimental
(observational)data.Studentsstudyingbusinessandfinancetendto
findthetermstructureofinterestratesexamplemorerelevant,althoughtheissuethereistestingtheimplicationofasimpletheory,asopposedtoinferringcausality.Ihavefoundthatspendingtimetalkingabout
theseexamples,inplaceofaformalreviewofprobabilityandstatistics,ismoresuccessful(andmoreenjoyableforthestudentsandme).
CHAPTER2
TEACHINGNOTES
ThisisthechapterwhereIexpectstudentstofollowmost,ifnot
all,ofthealgebraicderivations.InclassIliketoderiveatleast
theunbiasednessoftheOLSslopecoefficient,andusually
variance.Ataminimum,ItalkaboutthefactorsaffectingTosimplifythenotation,afterIemphasizetheassumptionsinthe
Iderivethethevariance.
populationmodel,andassumerandomsampling,Ijustconditiononthe
valuesoftheexplanatoryvariablesinthesample.Technically,thisis
justifiedbyrandomsamplingbecause,forexample,E(u|x,x,…,x)=
E(u|x)byindependentsampling.Ifindthatstudentsareabletofocus
onthekeyassumptionSLR.4andsubsequentlytakemywordabouthowconditioningontheindependentvariablesinthesampleisharmless.(Ifyouprefer,theappendixtoChapter3doestheconditioningargument
ii
carefully.)Becausestatisticalinferenceisnomoredifficultin
multipleregressionthaninsimpleregression,Ipostponeinferenceuntil
Chapter4.(Thisreducesredundancyandallowsyoutofocusonthe
interpretivedifferencesbetweensimpleandmultipleregression.)
Youmightnoticehow,comparedwithmostothertexts,Iuse
relativelyfewassumptionstoderivetheunbiasednessoftheOLSslope
estimator,followedbytheformulaforitsvariance.ThisisbecauseI
donotintroduceredundantorunnecessaryassumptions.Forexample,once
1/18
sionmodel.Whenweaddtheappropriatehomoskedasticitya
tcollinearityinthesample(evenifitdoesnotthanrandom
ldbeskippedwithoutlossofcontinuity.CHAPTER12TEACHI
ntemporaneouslyexogenous,OLSisconsistent.Thisresul
SLR.4isassumed,nothingfurtherabouttherelationshipbetweenuand
xisneededtoobtaintheunbiasednessofOLSunderrandomsampling.
CHAPTER3
TEACHINGNOTES
Forundergraduates,Idonotworkthroughmostofthederivationsin
thischapter,atleastnotindetail.Rather,Ifocusoninterpreting
theassumptions,whichmostlyconcernthepopulation.Othersampling,theonlyassumptionthatinvolvesmorethanpopulationconsiderationsistheassumptionaboutnoperfectcollinearity,possibilityofperfectcollinearityinthesample(evenifitdoesnot
thanrandom
wherethe
occurinthepopulation)shouldbetouchedon.Themoreimportantissue
isperfectcollinearityinthepopulation,butthisisfairlyeasyto
dispensewithviaexamples.Thesecomefrommyexperiencesofmodelspecificationissuesthatbeginnershavetroublewith.
Thecomparisonofsimpleandmultipleregressionestimatesontheparticularsampleathand,asopposedtotheirstatistical
withthekinds
based
propertiesusuallymakesastrongimpression.SometimesIdonot
botherwiththe“partiallingout”interpretationofmultiple
regression.
Asfarasstatisticalproperties,noticehowItreattheproblemof
includinganirrelevantvariable:noseparatederivationisneeded,as
theresultfollowsformTheorem3.1.
Idoliketoderivetheomittedvariablebiasinthesimplecase.This
isnotmuchmoredifficultthanshowingunbiasednessofOLSinthesimple
regressioncaseunderthefirstfourGauss-Markovassumptions.Itis
importanttogetthestudentsthinkingaboutthisproblemearlyon,and
beforetoomanyadditional(unnecessary)assumptionshavebeen
introduced.
Ihaveintentionallykeptthediscussionofmulticollinearitytoa
minimum.Thispartlyindicatesmybias,butitalsoreflectsreality.
Itis,ofcourse,veryimportantforstudentstounderstandthepotential
consequencesofhavinghighlycorrelatedindependentvariables.But
thisisoftenbeyondourcontrol,exceptthatwecanasklessofour
multipleregressionanalysis.Iftwoormoreexplanatoryvariablesare
highlycorrelatedinthesample,weshouldnotexpecttoprecisely
estimatetheirceterisparibuseffectsinthepopulation.
Ifindextensivetreatmentsofmulticollinearity,whereone
“tests”orsomehow“solves”themulticollinearityproblem,tobe
misleading,atbest.Eventheorganizationofsometextsgivesthe
impressionthatimperfectmulticollinearityissomehowaviolationofthe
Gauss-Markovassumptions:theyincludemulticollinearityinachapter
orpartofthebookdevotedto“violationofthebasicassumptions,”
orsomethinglikethat.Ihavenoticedthatmaster’sstudentswhohave
hadsomeundergraduateeconometricsareoftenconfusedonthe
2/18
erdispersionisoftenpresentincountregressionmodels,
alformforcornersolutionoutcomes.Inmostcasesitiswro
atedasfixedparametersorrandomvariables.WithlargeNa
tendtofindthetermstructureofinterestratesexamplemo
:
0
multicollinearityissue.Itisveryimportantthatstudentsnotconfuse
multicollinearityamongtheincludedexplanatoryvariablesina
regressionmodelwiththebiascausedbyomittinganimportantvariable.
IdonotprovetheGauss-Markovtheorem.Instead,Iemphasizeitsimplications.Sometimes,andcertainlyforadvancedbeginners,Iputa
specialcaseofProblem3.12onamidtermexam,whereImakeaparticular
choiceforthefunctiong(x).Ratherthanhavethestudentsdirectly
comparethevariances,theyshouldappealtotheGauss-MarkovtheoremforthesuperiorityofOLSoveranyotherlinear,unbiasedestimator.
CHAPTER4
TEACHINGNOTES
Atthestartofthischapterisgoodtimetoremindstudentsthata
specificerrordistributionplayednoroleintheresultsofChapter3.
Thatisbecauseonlythefirsttwomomentswerederivedunderthefull
setofGauss-Markovassumptions.Nevertheless,normalityisneededto
obtainexactnormalsamplingdistributions(conditionalonthe
explanatoryvariables).IemphasizethatthefullsetofCLMassumptions
areusedinthischapter,butthatinChapter5werelaxthenormality
assumptionandstillperformapproximatelyvalidinference.Onecould
arguethattheclassicallinearmodelresultscouldbeskippedentirely,andthatonlylarge-sampleanalysisisneeded.But,fromapractical
perspective,studentsstillneedtoknowwherethefrombecausevirtuallyallregressionpackagesreport
tdistributioncomeststatisticsand
obtainp-valuesoffofthetdistribution.Ithenfinditveryeasyto
coverChapter5quickly,byjustsayingwecandropnormalityandstill
usetstatisticsandtheassociatedp-valuesasbeingapproximatelyvalid.
Besides,occasionallystudentswillhavetoanalyzesmallerdatasets,
especiallyiftheydotheirownsmallsurveysforatermproject.
Itiscrucialtoemphasizethatwetesthypothesesaboutunknown
populationparameters.Itellmystudentsthattheywillbepunishedif
theywritesomethinglikeH
=0.
01
=0onanexamor,evenworse,H
:.632
OneusefulfeatureofChapter4isitsillustrationofhowtorewrite
apopulationmodelsothatitcontainstheparameterofinterestintesting
asinglerestriction.Ifindthisiseasier,boththeoreticallyand
practically,thancomputingvariancesthatcan,insomecases,dependon
numerouscovarianceterms.Theexampleoftestingequalityofthereturn
totwo-andfour-yearcollegesillustratesthebasicmethod,andshows
thattherespecifiedmodelcanhaveausefulinterpretation.Ofcourse,
somestatisticalpackagesnowprovideastandarderrorforlinear
combinationsofestimateswithasimplecommand,andthatshouldbetaught,too.
3/18
stingexampleshavedistributedlagdynamics.Indiscussi
toobtainmorereasonablefunctionalformsfortherespons
mationprocedure.CHAPTER18TEACHINGNOTESSeveralofthe
lysisappropriateforamaster’slevelcourse.Anexplicit
OnecanuseanFtestforsinglelinearrestrictionsonmultiple
parameters,butthisislesstransparentthanattestanddoesnot
immediatelyproducethestandarderrorneededforaconfidenceinterval
orfortestingaone-sidedalternative.Thetrickofrewritingthe
populationmodelisusefulinseveralinstances,includingobtaining
confidenceintervalsforpredictionsinChapter6,aswellasfor
obtainingconfidenceintervalsformarginaleffectsinmodelswith
interactions(alsoinChapter6).
Themajorleaguebaseballplayersalaryexampleillustratesthe
differencebetweenindividualandjointsignificancewhenexplanatory
variables(rbisyrandhrunsyrinthiscase)arehighlycorrelated.Itend
toemphasizetheR-squaredformoftheFstatisticbecause,inpractice,
itisapplicablealargepercentageofthetime,anditismuchmorereadily
computed.Idoregretthatthisexampleisbiasedtowardstudentsin
countrieswherebaseballisplayed.Still,itisoneofthebetter
examplesofmulticollinearitythatIhavecomeacross,andstudentsof
allbackgroundsseemtogetthepoint.
CHAPTER5
TEACHINGNOTES
Chapter5isshort,butitisconceptuallymoredifficultthanthe
earlierchapters,primarilybecauseitrequiressomeknowledgeof
asymptoticpropertiesofestimators.Inclass,Igiveabrief,heuristic
descriptionofconsistencyandasymptoticnormalitybeforestatingthe
consistencyandasymptoticnormalityofOLS.(Conveniently,thesame
assumptionsthatworkforfinitesampleanalysisworkforasymptotic
analysis.)Moreadvancedstudentscanfollowtheproofofconsistency
oftheslopecoefficientinthebivariateregressioncase.SectionE.4
containsafullmatrixtreatmentofasymptoticanalysisappropriatefor
amaster’slevelcourse.
Anexplicitillustrationofwhathappenstostandarderrorsasthe
samplesizegrowsemphasizestheimportanceofhavingalargersample.
IdonotusuallycovertheLMstatisticinafirst-semestercourse,and
Ionlybrieflymentiontheasymptoticefficiencyresult.Withoutfull
useofmatrixalgebracombinedwithlimittheoremsforvectorsand
matrices,itisverydifficulttoproveasymptoticefficiencyofOLS.
Ithinktheconclusionsofthischapterareimportantforstudents
toknow,eventhoughtheymaynotfullygraspthedetails.OnexamsI
usuallyincludetrue-falsetypequestions,withexplanation,totestthestudents’understandingofasymptotics.[Forexample:“Inlarge
sampleswedonothavetoworryaboutomittedvariablebias.”(False).Or“Eveniftheerrortermisnotnormallydistributed,inlargesamples
4/18
evarianceoftheidiosyncraticerror.IthinkExample14.4
hapter15,therankconditiontest).emphasis.)Giventhei
s,noticehowItreattheproblemofincludinganirrelevant
lresultscouldbeskippedentirely,andthatonlylarge-sa
wecanstillcomputeapproximatelyvalidconfidenceintervalsunderthe
Gauss-Markovassumptions.”(True).]
CHAPTER6
TEACHINGNOTES
IcovermostofChapter6,butnotallofthematerialingreatdetail.
IusetheexampleinTable6.1toquicklyrunthroughtheeffectsofdata
scalingontheimportantOLSstatistics.(Studentsshouldalreadyhave
afeelfortheeffectsofdatascalingonthecoefficients,fittingvalues,
andR-squaredbecauseitiscoveredinChapter2.)Atmost,Ibriefly
mentionbetacoefficients;ifstudentshaveaneedforthem,theycanread
thissubsection.
Thefunctionalformmaterialisimportant,andIspendsometimeonmore
complicatedmodelsinvolvinglogarithms,quadratics,andinteractions.
Animportantpointformodelswithquadratics,andespecially
interactions,isthatweneedtoevaluatethepartialeffectat
interestingvaluesoftheexplanatoryvariables.Often,zeroisnotan
interestingvalueforanexplanatoryvariableandiswelloutsidethe
rangeinthesample.UsingthemethodsfromChapter4,itiseasyto
obtainconfidenceintervalsfortheeffectsatinteresting
Asfarasgoodness-of-fit,Ionlyintroducetheadjusted
xvalues.
R-squared,as
Ithinkusingaslewofgoodness-of-fitmeasurestochooseamodelcan
beconfusingtonovices(anddoesnotreflectempiricalpractice).It
isimportanttodiscusshow,ifwefixateonahighR-squared,wemaywindupwithamodelthathasnointerestingceterisparibusinterpretation.
Ioftenhavestudentsandcolleaguesaskifthereisasimplewaytopredictywhenlog(y)hasbeenusedasthedependentvariable,andtoobtaina
goodness-of-fitmeasureforthelog(theusualR-squaredobtainedwhen
y)modelthatcanbecomparedwithyisthedependentvariable.The
methodsdescribedinSection6.4areeasytoimplementand,unlikeotherapproaches,donotrequirenormality.
Thesectiononpredictionandresidualanalysiscontainsseveral
importanttopics,includingconstructingpredictionintervals.Itis
usefultoseehowmuchwiderthepredictionintervalsarethanthe
confidenceintervalfortheconditionalmean.Iusuallydiscusssomeoftheresidual-analysisexamples,astheyhavereal-worldapplicability.
CHAPTER7
TEACHINGNOTES
5/18
placeofkidslt6(withnoyoungchildrenbeingthebasegrou
lygettoteachthemeasurementerrormaterial,althoughth
atoryvariablesthatarenotstrictlyexogenous.Whatthes
tchedpairssampleshavebeenprofitablyusedinrecenteco
Thisisafairlystandardchapteronusingqualitativeinformationin
regressionanalysis,althoughItrytoemphasizeexampleswithpolicy
relevance(andonlycross-sectionalapplicationsareincluded.).
Inallowingfordifferentslopes,itisimportant,asinChapter6,to
appropriatelyinterprettheparametersandtodecidewhethertheyareofdirectinterest.Forexample,inthewageequationwherethereturnto
educationisallowedtodependongender,thecoefficientonthefemale
dummyvariableisthewagedifferentialbetweenwomenandmenatzeroyears
ofeducation.Itisnotsurprisingthatwecannotestimatethisvery
well,norshouldwewantto.Inthisparticularexamplewewoulddrop
theinteractiontermbecauseitisinsignificant,buttheissueof
interpretingtheparameterscanariseinmodelswheretheinteractionterm
issignificant.
IndiscussingtheChowtest,Ithinkitisimportanttodiscusstesting
fordifferencesinslopecoefficientsafterallowingforanintercept
difference.Inmanyapplications,asignificantChowstatisticsimply
indicatesinterceptdifferences.(SeetheexampleinSection7.4on
student-athleteGPAsinthetext.)Fromapracticalperspective,itis
importanttoknowwhetherthepartialeffectsdifferacrossgroupsor
whetheraconstantdifferentialissufficient.
Iadmitthatanunconventionalfeatureofthischapterisitsintroductionofthelinearprobabilitymodel.IcovertheLPMhereforseveralreasons.First,theLPMisbeingusedmoreandmorebecauseitiseasiertointerpret
thanprobitorlogitmodels.Plus,oncetheproperparameterscalings
aredoneforprobitandlogit,theestimatedeffectsareoftensimilar
totheLPMpartialeffectsnearthemeanormedianvaluesofthe
explanatoryvariables.ThetheoreticaldrawbacksoftheLPMareoften
ofsecondaryimportanceinpractice.ComputerExerciseC7.9isagood
onetoillustratethat,evenwithover9,000observations,theLPMcan
deliverfittedvaluesstrictlybetweenzeroandoneforallobservations.IftheLPMisnotcovered,manystudentswillneverknowaboutusing
econometricstoexplainqualitativeoutcomes.Thiswouldbeespecially
unfortunateforstudentswhomightneedtoreadanarticlewhereanLPM
isused,orwhomightwanttoestimateanLPMforatermpaperorsenior
thesis.Oncetheyareintroducedtopurposeandinterpretationofthe
LPM,alongwithitsshortcomings,theycantacklenonlinearmodelson
theirownorinasubsequentcourse.
AusefulmodificationoftheLPMestimatedinequation(7.29)istodrop
kidsge6(becauseitisnotsignificant)andthendefinetwodummy
variables,oneforkidslt6equaltooneandtheotherforkidslt6atleast
two.Thesecanbeincludedinplaceofkidslt6(withnoyoungchildren
beingthebasegroup).Thisallowsadiminishingmarginaleffectinan
LPM.Iwasabitsurprisedwhenadiminishingeffectdidnotmaterialize.
CHAPTER8
6/18
d,orwhomightwanttoestimateanLPMforatermpaperorseni
ndefinetwodummyvariables,oneforkidslt6equaltoonean
ling,Ijustconditiononthevaluesoftheexplanatoryvari
,butitalsoexplicitlyconsidersheteroskedasticityint
TEACHINGNOTES
Thisisagoodplacetoremindstudentsthathomoskedasticityplayedno
roleinshowingthatOLSisunbiasedfortheparametersintheregressionequation.Inaddition,youprobablyshouldmentionthatthereisnothing
wrongwiththeR-squaredoradjustedR-squaredasgoodness-of-fit
measures.ThekeyisthattheseareestimatesofthepopulationR-squared,
1[Var(u)/Var(y)],wherethevariancesaretheunconditional
variancesinthepopulation.Theusualversion,consistentlyestimatethepopulationVar(u|x)=Var(y|x)dependsonx.Oftheusualstandarderrors,tstatistics,
R-squared,andtheadjustedR-squaredwhetherornot
course,heteroskedasticitycauses
andFstatisticstobeinvalid,
eveninlargesamples,withorwithoutnormality.
Byexplicitlystatingthehomoskedasticityassumptionasconditionalon
theexplanatoryvariablesthatappearintheconditionalmean,itisclearthatonlyheteroskedasticitythatdependsontheexplanatoryvariables
inthemodelaffectsthevalidityofstandarderrorsandteststatistics.
TheversionoftheBreusch-Pagantestinthetext,andtheWhitetest,
areideallysuitedfordetectingformsofheteroskedasticitythat
invalidateinferenceobtainedunderhomoskedasticity.If
heteroskedasticitydependsonanexogenousvariablethatdoesnotalso
appearinthemeanequation,thiscanbeexploitedinweightedleast
squaresforefficiency,butonlyrarelyissuchavariableavailable.Onecasewheresuchavariableisavailableiswhenanindividual-level
equationhasbeenaggregated.IdiscussthiscaseinthetextbutIrarely
havetimetoteachit.
AsImentioninthetext,othertraditionaltestsforheteroskedasticity,
suchastheParkandGlejsertests,donotdirectlytestwhatwewant,
oraddtoomanyassumptionsunderthenull.TheGoldfeld-Quandttestonlyworkswhenthereisanaturalwaytoorderthedatabasedononeindependent
variable.Thisisrareinpractice,especiallyforcross-sectional
applications.
Somearguethatweightedleastsquaresestimationisarelic,andisno
longernecessarygiventheavailabilityofheteroskedasticity-robust
standarderrorsandteststatistics.WhileIamsympathetictothis
argument,itpresumesthatwedonotcaremuchaboutefficiency.Even
inlargesamples,theOLSestimatesmaynotbepreciseenoughtolearn
muchaboutthepopulationparameters.Withsubstantial
heteroskedasticitywemightdobetterwithweightedleastsquares,even
iftheweightingfunctionismisspecified.Asdiscussedinthetexton
pages288-289,onecan,andprobablyshould,computerobuststandard
errorsafterweightedleastsquares.Forasymptoticefficiency
comparisons,thesewouldbedirectlycomparabletothe
heteroskedasiticity-robuststandarderrorsforOLS.
7/18
llowsyoutofocusontheinterpretivedifferencesbetween
hExamples9.3and9.4.Thefirstshowsthatcontrollingfor
lesisworthmentioning.Theresultonexogenoussamplesel
edtoallowstudentstochoosetheirowntopics,butthisisd
WeightedleastsquaresestimationoftheLPMisaniceexampleoffeasibleGLS,atleastwhenallfittedvaluesareintheunitinterval.
Interestingly,intheLPMexamplesinthetextandtheLPMcomputer
exercises,theheteroskedasticity-robuststandarderrorsoftendifferby
onlysmallamountsfromtheusualstandarderrors.However,inacouple
ofcasesthedifferencesarenotable,asinComputerExerciseC8.7.
CHAPTER9
TEACHINGNOTES
ThecoverageofRESETinthischapterrecognizesthatitisatestfor
neglectednonlinearities,anditshouldnotbeexpectedtobemorethan
that.(Formally,itcanbeshownthatifanomittedvariablehasa
conditionalmeanthatislinearintheincludedexplanatoryvariables,
RESEThasnoabilitytodetecttheomittedvariable.Interested
mayconsultmychapterinCompaniontoTheoreticalEconometrics
readers,2001,
editedbyBadiBaltagi.)IjustteachstudentstheFstatisticversion
ofthetest.
TheDavidson-MacKinnontestcanbeusefulfordetectingfunctionalform
misspecification,especiallywhenonehasinmindaspecificalternative,
nonnestedmodel.Ithastheadvantageofalwaysbeingaonedegreeof
freedomtest.
Ithinktheproxyvariablematerialisimportant,butthemainpointscanbemadewithExamples9.3and9.4.Thefirstshowsthatcontrollingfor
IQcansubstantiallychangetheestimatedreturntoeducation,andthe
omittedabilitybiasisintheexpecteddirection.Interestingly,
educationandabilitydonotappeartohaveaninteractiveeffect.
Example9.4isaniceexampleofhowcontrollingforapreviousvalueof
thedependentvariableandnonsurveydata
somethingthatisoftenpossiblewithsurvey
cangreatlyaffectapolicyconclusion.Computer
Exercise9.3isalsoagoodillustrationofthismethod.
Irarelygettoteachthemeasurementerrormaterial,althoughthe
attenuationbiasresultforclassicalerrors-in-variablesisworth
mentioning.
Theresultonexogenoussampleselectioniseasytodiscuss,withmore
detailsgiveninChapter17.Theeffectsofoutlierscanbeillustrated
usingtheexamples.Ithinktheinfant
isusefulforillustratinghowasingle
alargeeffectontheOLSestimates.
mortalityexample,Example9.10,influentialobservationcanhave
Withthegrowingimportanceofleastabsolutedeviations,itmakessensetoatleastdiscussthemeritsofLAD,atleastinmoreadvancedcourses.ComputerExercise9.9isagoodexampletoshowhowmeanandmedianeffectscanbeverydifferent,eventhoughtheremaynotbe“outliers”inthe
usualsense.
8/18
pplicablealargepercentageofthetime,anditismuchmore
hExamples9.3and9.4.Thefirstshowsthatcontrollingfor
mputerExerciseC17.3.]Poissonregressionwithanexpone
htforward.Unfortunately,atthebeginninglevel(andeve
CHAPTER10
TEACHINGNOTES
Becauseofitsrealismanditscareinstatingassumptions,thischapter
putsasomewhatheavierburdenontheinstructorandstudentthan
traditionaltreatmentsoftimeseriesregression.Nevertheless,Ithink
itisworthit.Itisimportantthatstudentslearnthatthereare
potentialpitfallsinherentinusingregressionwithtimeseriesdatathat
arenotpresentforcross-sectionalapplications.Trends,seasonality,
andhighpersistenceareubiquitousintimeseriesdata.Bythistime,
studentsshouldhaveafirmgraspofmultipleregressionmechanicsand
inference,andsoyoucanfocusonthosefeaturesthatmaketimeseries
applicationsdifferentfromcross-sectionalones.
Ithinkitisusefultodiscussstaticandfinitedistributedlagmodels
atthesametime,astheseatleasthaveashotatsatisfyingthe
Gauss-Markovassumptions.Manyinterestingexampleshavedistributedlagdynamics.IndiscussingthetimeseriesversionsoftheCLM
assumptions,Irelymostlyonintuition.Theiseasytodiscussintermsoffeedback.It
notionofstrictexogeneityisalsoprettyapparentthat,
inmanyapplications,therearelikelytobesomeexplanatoryvariables
thatarenotstrictlyexogenous.Whatthestudentshouldknowisthat,
toconcludethatOLSisunbiasedasopposedtoconsistentweneed
toassumeaverystrongformofexogeneityoftheregressors.Chapter
11showsthatonlycontemporaneousexogeneityisneededforconsistency.Althoughthetextiscarefulinstatingtheassumptions,inclass,afterdiscussingstrictexogeneity,IleavetheconditioningonXimplicit,especiallywhenIdiscussthenoserialcorrelationassumption.Asthis
isanewassumptionIspendsometimeonit.(Ialsodiscusswhywedid
notneeditforrandomsampling.)
OncetheunbiasednessofOLS,theGauss-Markovtheorem,andthesamplingdistributionsundertheclassicallinearmodelassumptionshavebeen
coveredwhichcanbedoneratherquicklyIfocusonapplications.
Fortunately,thestudentsalreadyknowaboutlogarithmsanddummy
variables.Itreatindexnumbersinthischapterbecausetheyarisein
manytimeseriesexamples.
Anovelfeatureofthetextisthediscussionofhowtocompute
goodness-of-fitmeasureswithatrendingorseasonaldependentvariable.Whiledetrendingordeseasonalizingyishardlyperfect(anddoesnotworkwithintegratedprocesses),itisbetterthansimplyreportingthevery
highR-squaredsthatoftencomewithtimeseriesregressionswithtrendingvariables.
CHAPTER11
9/18
rmoreexplanatoryvariablesarehighlycorrelatedinthes
tethepopulationwell-definedunderstationarity).Equa
icient,perhapsafterdetrending.TheexamplesinSection
delprovidesmorerealistictousenonefunctionalformsfo
TEACHINGNOTES
Muchofthematerialinthischapterisusuallypostponed,ornotcoveredatall,inanintroductorycourse.However,asChapter10indicates,theset
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024材料購(gòu)銷合同推出
- 2024解除合同的分析范文
- 2024知識(shí)產(chǎn)權(quán)使用授權(quán)合同范本
- 蘇州科技大學(xué)天平學(xué)院《室內(nèi)陳設(shè)藝術(shù)設(shè)計(jì)一》2021-2022學(xué)年第一學(xué)期期末試卷
- 承壓類特種設(shè)備安全管理考核試卷
- 《口腔修復(fù)學(xué)簡(jiǎn)介》課件
- 公共設(shè)施維修與保養(yǎng)考核試卷
- 如何編制有效的消防預(yù)案考核試卷
- 農(nóng)業(yè)科學(xué)與農(nóng)產(chǎn)品原料考核試卷
- 《玉米加工》課件
- 抗菌藥物臨床應(yīng)用課件
- 腫瘤健康預(yù)防知識(shí)講座
- 護(hù)理專業(yè)人才培養(yǎng)方案
- 小學(xué)生航海知識(shí)講座
- 心電監(jiān)護(hù)并發(fā)癥預(yù)防及處理
- 甲魚宣傳方案策劃
- 夜班人員的補(bǔ)貼和福利政策
- 河北省石家莊市長(zhǎng)安區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末語文試卷
- 2023年12月2024年中國(guó)鐵路成都局招考聘用高校畢業(yè)生924人(一)筆試歷年高頻考點(diǎn)(難、易錯(cuò)點(diǎn))附答案詳解
- 直播運(yùn)營(yíng)團(tuán)隊(duì)組織架構(gòu)與各崗位職責(zé)研究
- 慢病管理及遠(yuǎn)程醫(yī)療的應(yīng)用
評(píng)論
0/150
提交評(píng)論