解題報告第一賽problem_第1頁
解題報告第一賽problem_第2頁
解題報告第一賽problem_第3頁
解題報告第一賽problem_第4頁
解題報告第一賽problem_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Theonestoremain

TimeLimit:1000ms,SpecialTimeLimit:2500ms,MemoryLimit:32768KBProblem11135:Nospecialjudgement

Problemdescription

ThereareNsoldiersstandinginoneline.Theyaremarkedfrom1toN,fromrighttoleft.Andtheyaregivenanumberm.Thenthesoldiersnumberedoff,straightfromtheright-handman.Theonewhoreportedanumberthatisthemultipleofmwaskeptintheline.Othershavetoleavetheline.Theycontinuedoingthistillthenumberofpeopleinthelineislessthanm.Forexample,ifthereare10soldiers,andm=3.Forthefirsttimethesoldierswhoaremarked3,6,9remainintheline.Forthesecondtimethesoldierwhoismarked9remainsintheline.Becausethenumberofsoldiersinthelineislessthanm,sothesoldiermarked9wastheonlyonetoremainintheline.

Nowwewanttoknowwhowillbetheonestoremain,canyoutellus?

Input

Thereareseveraltestcasesintheinput.Eachtestcasesisonlyoneline,containstwointegersnandm.(3<=n<=109,2<=m<=n).Theinputendswhenn=0andm=0.

Output

Foreachtestcase,outputtwolines.Thefirstlinecontainsoneintegerx,thenumberofsoldierstoremain.Thesecondlinecontainsxintegers,thenumbersmarkedonthesoldierswhoremainintheline.Youshouldoutputtheminincreasingorder.

SampleInput

103

83

00

SampleOutput

1

9

2

36

NumberGuessing

TimeLimit:1000ms,SpecialTimeLimit:2500ms,MemoryLimit:32768KBProblem11146:Nospecialjudgement

Problemdescription

NumberGuessingisacomputergame.First,thecomputerchoosesfourdifferentdigits,youneedtoguessthesefourdigitsinthefewesttimes,foreachguess,thecomputerwillshowajudgementintheformof"#A#B","#"isanumber0~4."#A"showshowmanydigitsyouguessedwithbothcorrectvalueandposition."#B"showshowmanydigitsyouguessedwithcorrectvalue.Forexample,thecomputerchose1234,andyouguessed6139,thecomputerwillshow"1A2B"foryouhavenumber"1"correctvaluebutwrongpositionandnumber"3"correctvaluewithcorrectposition.Thusthecomputergivesyouthejudgementof"1A2B"

Nowyouhavememorizedthedigitsyouguessedandthejudgementsyougot,youfeellikeyoucanfigureoutthecorrectanswer.Lifeisfilledwithwisdom,isn'tit?

Input

Thereareseveraltestcases.Foreachtestcase,thefirstlinecontainsasinglepositiveintegerNindicatesthetimesyoucanguess,thefollowingNlinesistherecordoftheguess,intheform:

#####A#B

Thefirstfournumbersisthenumbersguessed,thenthejudgementsforyourguess.TheinputterminatedwhenNisnotpostiveinteger,andnotneedtoproceed.

Output

Foreachtestcase,outputasinglelinecontainsexactlyfourdigitsthatthecomputerhaschosen.Youmayassumethateachtestcasegivesyouenoughinformation,soyoucanfigureoutthecorrectanswer.

SampleInput

2

12342A4B

12430A4B

3

07323A3B

15260A0B

45670A2B

-1

SampleOutput

2134

0734

ChineseChess

BothXnbyandHekuilikeplayingChineseChess.Therearetwosides:blackandred

(inthefiguresbelow,redisthepieceswithwhitecharacters)inChineseChess.Eachsidetakemovesinturns.Oneday,theymadeacomposition(Now,it’sred'sturn):

Bytheway,eachsidecanonlymovethe”Cannon”

and

the”Pawn”

.Thecannoncanmoveinstraightlinesatany

distance(fromonecrosstoanother)ifnootherchesspiecesblock

itsway.Andthepawncanonlymoveforward,oneunitperturn.(Forthered,top-bottomisforward,andfortheblack,bottom-top).

Afterthediscussion,theyallagreethatonlywhenoneside,forexample,theblackcannonisforcedtotakeahorizonalmovewhich

makestheredcannoncangettothehemlineoftheblack,thentheredwins(Seethefollowingfigure).

So,theymakeafewrules:

Thecannoncanonlymoveforward.Ifonesidehastomovethe“cannon”toleftorright,heloses.Noticethatitdoesn'tchangesituationifacannonmovesbackward,becausetheoppositesidecanmoveitscannonforwardforthesamedistance.

Onlythepawnswhichhaven'tcrossedtherivercanmove.Andthedistancebetweeneachpairofpawns(onered,oneblack)mustexceed1.

Thewinneronlydependsonthedistancemandn(betweenthepairofcannonsinthesameverticallinecountingfromtheleftside),S1,S2,S3(betweenthepairofpawns”whichnotcrosstheriverinthesameverticallinecountingfromtheleftside).

XnbyandHekuiwanttoknow:whichsideisthewinnerwheneachofthemmovesinthebeststrategy.Tomakeitmoreinteresting,

m,n,S1,S2,S3arenotlimitedbyChineseChessboard,inotherwords,Chessboardofthisgameislargeenough.

輸入

Thereareseveraltestcases,eachcaseinasinglelinewhichcontains5integersseparatedbyablank:m,n,S1,S2,S3,0≤m,n≤1000000,1≤S1,S2,S3≤1000。Theinputterminateswhenonelinecontainsasinglenegativeinteger,whichneedn'ttobeprocessed.

輸出

Foreachtestcase,outputthewinner(RedorBlack)

樣例輸入

41221

00111

-1

樣例輸出

RedBlack

PageReplacement

Pagereplacementalgorithmswereahottopicofresearchanddebateinthe1960sand1970s.ThatmostlyendedwiththedevelopmentofsophisticatedLRUapproximationsandworkingsetalgorithms.Sincethen,somebasicassumptionsmadebythetraditionalpagereplacementalgorithmswereinvalidated,resultinginarevivalofresearch.Inparticular,thefollowingtrendsinthebehaviorofunderlyinghardwareanduser-levelsoftwarehasaffectedtheperformanceofpagereplacementalgorithms:

Sizeofprimarystoragehasincreasedbymultipleordersofmagnitude.Withseveralgigabytesofprimarymemory,algorithmsthatrequireaperiodiccheckofeachandeverymemoryframearebecominglessandlesspractical.Memoryhierarchieshavegrowntaller.ThecostofaCPUcachemissisfarmoreexpensive.Thisexacerbatesthepreviousproblem.

Localityofreferenceofusersoftwarehasweakened.Thisismostlyattributedtothespreadofobject-orientedprogrammingtechniquesthatfavorlargenumbersofsmallfunctions,useofsophisticateddatastructuresliketreesandhashtablesthattendtoresultinchaoticmemoryreferencepatterns,andtheadventofgarbagecollectionthatdrasticallychangedmemoryaccessbehaviorofapplications.

Requirementsforpagereplacementalgorithmshavechangedduetodifferencesinoperatingsystemkernelarchitectures.Inparticular,mostmodernOSkernelshaveunifiedvirtualmemoryandfilesystemcaches,requiringthepagereplacementalgorithmtoselectapagefromamongthepagesofbothuserprogramvirtualaddressspacesandcachedfiles.Thelatterpageshavespecificproperties.Forexample,theycanbelocked,orcanhavewriteorderingrequirementsimposedbyjournaling.

Moreover,asthegoalofpagereplacementistominimizetotaltimewaitingformemory,ithastotakeintoaccountmemoryrequirementsimposedbyotherkernelsub-systemsthatallocatememory.Asaresult,pagereplacementinmodernkernels(Linux,FreeBSD,andSolaris)tendstoworkatthelevelofageneralpurposekernelmemoryallocator,ratherthanatthehigherlevelofavirtualmemorysubsystem.

Therearemanypagereplacementalgorithms,oneofthemisLRU:

Theleastrecentlyusedpage(LRU)replacementalgorithm,thoughsimilarinnametoNRU(Notrecentlyused),differsinthefactthatLRUkeepstrackofpageusageoverashortperiodoftime,whileNRUjustlooksattheusageinthelastclockinterval.LRUworksontheideathatpagesthathavebeenmostheavilyusedinthepastfewinstructionsaremostlikelytobeusedheavilyinthenextfewinstructionstoo.WhileLRUcanprovidenear-optimalperformanceintheory(almostasgoodasAdaptiveReplacementCache),itisratherexpensivetoimplementinpractice.Thereareafewimplementationmethodsforthisalgorithmthattrytoreducethecostyetkeepasmuchoftheperformanceaspossible.

OneimportantadvantageofLRUalgorithmisthatitisamenabletofullstatisticalanalysis.Ithasbeenproved,forexample,thatLRUcanneverresultinmorethanN-

7012

string

0304230321201701reference

7772 2 4440 1 11

000 0 0033 3 00 page

framesinpool

11 3 3222 2 27

Foragivenreferencestring,youneedtocalculatethenumberofpagefaults.

輸入

Thefirstlinecontainsaninteger,thenumberoftestcases.Eachtestcasecontainstwolines,thefirstlineisthecapacityofthemanagementpoolm(0<m≤10000),andthelengthofreferencestringn(0<n≤100000).Thenextlinecontainsexactlynintegers,whichindicatethereferencesequenceofpageframes(pagenumberrangedfrom0ton).

輸出

Foreachtestcase,theoutputshouldcontainsthenumberofpagefaultsthatoccurred.

樣例輸入

3

35

12345

35

12123

320

70120304230321201701

樣例輸出

5

3

12

STTask

YougetaSTtask,thatis:givenastickoneendofwhoismooredontheground,youareaskedtoturnoverthestickbyholdingtheotherend.Whenitreachesthegroundagain,thetaskisfinished.Itistruethatontheprocess,thestickisalwaysonthesameplaneverticaltheground.Andonthisplane,thereislightfromuptodown,sothatwecanseeonthegroundalineofshadow.Lookatthepicture:

Inordertoexpresstheshadowpartandtheun-shadow(lightspace)part,tosimpletheproblemwejustneedtoexpressthelengththat2timesofthelengthofthestickwheretheshadowmayoccur.

Now,givetheproblem:thestickonthebeginningisontheleftofthemooredpoint,andweturnitoncertainangularspeed,usinga‘S’todenoteoneunitofthelightspaceanda‘T’foroneunitoftheshadowline.Besidethat,arealnumberisneededtotellthescalebetweentheshadowlineandthefulllinewhereshadowmaybe.

輸入

Thereisonlyonecase.TwointegersL(0<L≤25)andV(0<V≤90)isgiven.Listhelengthofthestick;Vistheangularspeedoftheturningtask,inanglepersecond

輸出

Foreverysecondduringthetask,youareaskedtotelltheshapeoftheshadowontheground.Seethesample:‘S’forthelightspaceand‘T’fortheshadow.

樣例輸入

2515

樣例輸出

TTTTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.50000

STTTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.48296

SSSTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.43301

SSSSSSSTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.35355

SSSSSSSSSSSSTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.25000

SSSSSSSSSSSSSSSSSSSTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.12941

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 0.00000

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTSSSSSSSSSSSSSSSSSSS 0.12941

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTSSSSSSSSSSSS 0.25000

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTSSSSSSS 0.35355

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTSSS 0.43301

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTTTS 0.48296

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTTTT 0.50000

提示

Ifthestickis3inlength,andtheshadowlineis1.49,wehavetheanswerthismoment:SSTSSS0.24833Ifthestickis3inlength,andtheshadowlineis1.51,wehavetheanswerthismoment:STTSSS0.25167Thatis,thenumberof‘T’alwaysisthenearestintegerofthelengthofshadow.

8numbersproblem

Ithinkalmosteveryacmerwillknowthe8numbersproblemwhichisaveryfamousproblem.Thegamebeginfromtheinitialstateofa3*3matrixwhichmakesupof8numbers(1-8)andablankblock(0).movetheblankblockwithitsadjacentblockuntilreachtheobjectivestate.Itisobviousthattheblankblockhasfourdirectionswhichitcanmovetowhenitisatthemiddleposition,i.e.up,down,left,right.Also,ithastwodirectionswhenitisatthecornerofthematrixandthreedirectionsatotherposintion.Formexample,theinitialstateofthematrix:

803

214

765

theobjectivestate:

123

804

765

andwegiveavalidmovingpath:

8

0

3

8

1

3

8

1

3

0

1

3

1

0

3

1

2

3

2

1

4

>2

0

4

>0

2

4

>8

2

4

>8

2

4

>8

0

4

7

6

5

7

6

5

7

6

5

7

6

5

7

6

5

7

6

5

Moreover,thepathwithleaststepsiscalledtheshortestpath.Andthe8numbersischeckwhethertherearethepathfromtheinitialstatetotheobjectivestateandifitexists,givetheshortestpath.

Andweallknowhuicpc229isnotverygoodatsearch,sohehasn'tsolvedthisproblemnow.Buthehassolvedanothereasyproblem.Theproblemisdescribedasfollow:

Giveaninitialstateofthematrix,andgiveasequenceofmoving.Foreverymoving,iftheblankblockcanmovetothedirectionasthemoving,moveit,otherwiseignorethismoving.Andwewanttoknowthefinalstateofthematrix.

輸入

Thefirstlineoftheinputisoneintegert,thenumberoftestcase.Foreachtestcase:

Threelinesrespondtotheinitialstateofthematrix,andtherewillbethreenumbersoneachofthethreelines.

Followbyanintergermcorrespondingtothenumberofmoving.

Thenextmline,everylinecontainonlyonecharacter:

U:movetheblankblockupforoneblock.D:movetheblankblockdownforoneblock.L:movetheblankblockleftforoneblock.

R:movetheblankblockrightforoneblock.

輸出

Foreachtestcaseoutputthefinalstateofthematrixforthreelinesasabove.Andtherewillbeablankspacebetweeneverytwonumbersonthesameline.Andyoushouldoutputoneblanklineaftereachtestcase.

樣例輸入

1

803

214

765

2

DR

樣例輸出

813

240

765

TheQianJinTeachingBuilding

時間限制(普通/Java):10000MS/100000MS 運行內存限制:65536KByte

Whenyoutrytosolvethisproblem,Ithinkthereisonlyatmostonemonthleftforourfootmen(FM2008)stayingatourAlmaMater.Ithinkthesefouryearsisthehappiestandmostimportanttimeinallmylife.IlearnedtostudyandmetsomanysincerefriendsinourschoolespeciallyinourACMteam.Itistoosimplethatjustsay“THX”toexpressmysincerethank,butImustsay“Thankyou“foryouall.IsendmyparticularthanktoDoctorWuforyouhelpandcaretomeandthewholeACMteam.Huicpc3-15,myteammateatfootmen,isthemostimportantbosomfriendinmylife.WeareclassmatesintheMathematicsandAppliedMathematics05-

1.WetookpartintheMathematicalModelingContesttogether,andparticipatedinACMContestasteammates.Wesurmountedthedifficulties,sufferedthedefeatandenjoyedthegladofsuccesstogether.Togetherwetastedthejoysandsorrowsoflife.Butitisalwaystruethatpleasanthoursflypast,anditistimetopart.Ican’thelptorunbacktothetimewhenwestudiedintheQianjingteachingbuildingforourexaminationsandlearnedtheknowledgeaboutalgorithmandprogramming.

Asweallknowthenumbersofseatsintheclassroomsarenotalwayssame.Whentheexaminationweekcomes,therewillbethesecasesthatitistoolargeforaclassbutthereisnosmallclassroomwhichisenoughforthem.Somanyseatsareleftunusedbutwecan’tuse.SoeverytimewewenttotheQianjinteachingbuildingtostudy,itisahardtimetofindafreeclassroom.Ireallylikeifth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論