版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Theonestoremain
TimeLimit:1000ms,SpecialTimeLimit:2500ms,MemoryLimit:32768KBProblem11135:Nospecialjudgement
Problemdescription
ThereareNsoldiersstandinginoneline.Theyaremarkedfrom1toN,fromrighttoleft.Andtheyaregivenanumberm.Thenthesoldiersnumberedoff,straightfromtheright-handman.Theonewhoreportedanumberthatisthemultipleofmwaskeptintheline.Othershavetoleavetheline.Theycontinuedoingthistillthenumberofpeopleinthelineislessthanm.Forexample,ifthereare10soldiers,andm=3.Forthefirsttimethesoldierswhoaremarked3,6,9remainintheline.Forthesecondtimethesoldierwhoismarked9remainsintheline.Becausethenumberofsoldiersinthelineislessthanm,sothesoldiermarked9wastheonlyonetoremainintheline.
Nowwewanttoknowwhowillbetheonestoremain,canyoutellus?
Input
Thereareseveraltestcasesintheinput.Eachtestcasesisonlyoneline,containstwointegersnandm.(3<=n<=109,2<=m<=n).Theinputendswhenn=0andm=0.
Output
Foreachtestcase,outputtwolines.Thefirstlinecontainsoneintegerx,thenumberofsoldierstoremain.Thesecondlinecontainsxintegers,thenumbersmarkedonthesoldierswhoremainintheline.Youshouldoutputtheminincreasingorder.
SampleInput
103
83
00
SampleOutput
1
9
2
36
NumberGuessing
TimeLimit:1000ms,SpecialTimeLimit:2500ms,MemoryLimit:32768KBProblem11146:Nospecialjudgement
Problemdescription
NumberGuessingisacomputergame.First,thecomputerchoosesfourdifferentdigits,youneedtoguessthesefourdigitsinthefewesttimes,foreachguess,thecomputerwillshowajudgementintheformof"#A#B","#"isanumber0~4."#A"showshowmanydigitsyouguessedwithbothcorrectvalueandposition."#B"showshowmanydigitsyouguessedwithcorrectvalue.Forexample,thecomputerchose1234,andyouguessed6139,thecomputerwillshow"1A2B"foryouhavenumber"1"correctvaluebutwrongpositionandnumber"3"correctvaluewithcorrectposition.Thusthecomputergivesyouthejudgementof"1A2B"
Nowyouhavememorizedthedigitsyouguessedandthejudgementsyougot,youfeellikeyoucanfigureoutthecorrectanswer.Lifeisfilledwithwisdom,isn'tit?
Input
Thereareseveraltestcases.Foreachtestcase,thefirstlinecontainsasinglepositiveintegerNindicatesthetimesyoucanguess,thefollowingNlinesistherecordoftheguess,intheform:
#####A#B
Thefirstfournumbersisthenumbersguessed,thenthejudgementsforyourguess.TheinputterminatedwhenNisnotpostiveinteger,andnotneedtoproceed.
Output
Foreachtestcase,outputasinglelinecontainsexactlyfourdigitsthatthecomputerhaschosen.Youmayassumethateachtestcasegivesyouenoughinformation,soyoucanfigureoutthecorrectanswer.
SampleInput
2
12342A4B
12430A4B
3
07323A3B
15260A0B
45670A2B
-1
SampleOutput
2134
0734
ChineseChess
BothXnbyandHekuilikeplayingChineseChess.Therearetwosides:blackandred
(inthefiguresbelow,redisthepieceswithwhitecharacters)inChineseChess.Eachsidetakemovesinturns.Oneday,theymadeacomposition(Now,it’sred'sturn):
Bytheway,eachsidecanonlymovethe”Cannon”
and
the”Pawn”
.Thecannoncanmoveinstraightlinesatany
distance(fromonecrosstoanother)ifnootherchesspiecesblock
itsway.Andthepawncanonlymoveforward,oneunitperturn.(Forthered,top-bottomisforward,andfortheblack,bottom-top).
Afterthediscussion,theyallagreethatonlywhenoneside,forexample,theblackcannonisforcedtotakeahorizonalmovewhich
makestheredcannoncangettothehemlineoftheblack,thentheredwins(Seethefollowingfigure).
So,theymakeafewrules:
Thecannoncanonlymoveforward.Ifonesidehastomovethe“cannon”toleftorright,heloses.Noticethatitdoesn'tchangesituationifacannonmovesbackward,becausetheoppositesidecanmoveitscannonforwardforthesamedistance.
Onlythepawnswhichhaven'tcrossedtherivercanmove.Andthedistancebetweeneachpairofpawns(onered,oneblack)mustexceed1.
Thewinneronlydependsonthedistancemandn(betweenthepairofcannonsinthesameverticallinecountingfromtheleftside),S1,S2,S3(betweenthepairofpawns”whichnotcrosstheriverinthesameverticallinecountingfromtheleftside).
XnbyandHekuiwanttoknow:whichsideisthewinnerwheneachofthemmovesinthebeststrategy.Tomakeitmoreinteresting,
m,n,S1,S2,S3arenotlimitedbyChineseChessboard,inotherwords,Chessboardofthisgameislargeenough.
輸入
Thereareseveraltestcases,eachcaseinasinglelinewhichcontains5integersseparatedbyablank:m,n,S1,S2,S3,0≤m,n≤1000000,1≤S1,S2,S3≤1000。Theinputterminateswhenonelinecontainsasinglenegativeinteger,whichneedn'ttobeprocessed.
輸出
Foreachtestcase,outputthewinner(RedorBlack)
樣例輸入
41221
00111
-1
樣例輸出
RedBlack
PageReplacement
Pagereplacementalgorithmswereahottopicofresearchanddebateinthe1960sand1970s.ThatmostlyendedwiththedevelopmentofsophisticatedLRUapproximationsandworkingsetalgorithms.Sincethen,somebasicassumptionsmadebythetraditionalpagereplacementalgorithmswereinvalidated,resultinginarevivalofresearch.Inparticular,thefollowingtrendsinthebehaviorofunderlyinghardwareanduser-levelsoftwarehasaffectedtheperformanceofpagereplacementalgorithms:
Sizeofprimarystoragehasincreasedbymultipleordersofmagnitude.Withseveralgigabytesofprimarymemory,algorithmsthatrequireaperiodiccheckofeachandeverymemoryframearebecominglessandlesspractical.Memoryhierarchieshavegrowntaller.ThecostofaCPUcachemissisfarmoreexpensive.Thisexacerbatesthepreviousproblem.
Localityofreferenceofusersoftwarehasweakened.Thisismostlyattributedtothespreadofobject-orientedprogrammingtechniquesthatfavorlargenumbersofsmallfunctions,useofsophisticateddatastructuresliketreesandhashtablesthattendtoresultinchaoticmemoryreferencepatterns,andtheadventofgarbagecollectionthatdrasticallychangedmemoryaccessbehaviorofapplications.
Requirementsforpagereplacementalgorithmshavechangedduetodifferencesinoperatingsystemkernelarchitectures.Inparticular,mostmodernOSkernelshaveunifiedvirtualmemoryandfilesystemcaches,requiringthepagereplacementalgorithmtoselectapagefromamongthepagesofbothuserprogramvirtualaddressspacesandcachedfiles.Thelatterpageshavespecificproperties.Forexample,theycanbelocked,orcanhavewriteorderingrequirementsimposedbyjournaling.
Moreover,asthegoalofpagereplacementistominimizetotaltimewaitingformemory,ithastotakeintoaccountmemoryrequirementsimposedbyotherkernelsub-systemsthatallocatememory.Asaresult,pagereplacementinmodernkernels(Linux,FreeBSD,andSolaris)tendstoworkatthelevelofageneralpurposekernelmemoryallocator,ratherthanatthehigherlevelofavirtualmemorysubsystem.
Therearemanypagereplacementalgorithms,oneofthemisLRU:
Theleastrecentlyusedpage(LRU)replacementalgorithm,thoughsimilarinnametoNRU(Notrecentlyused),differsinthefactthatLRUkeepstrackofpageusageoverashortperiodoftime,whileNRUjustlooksattheusageinthelastclockinterval.LRUworksontheideathatpagesthathavebeenmostheavilyusedinthepastfewinstructionsaremostlikelytobeusedheavilyinthenextfewinstructionstoo.WhileLRUcanprovidenear-optimalperformanceintheory(almostasgoodasAdaptiveReplacementCache),itisratherexpensivetoimplementinpractice.Thereareafewimplementationmethodsforthisalgorithmthattrytoreducethecostyetkeepasmuchoftheperformanceaspossible.
OneimportantadvantageofLRUalgorithmisthatitisamenabletofullstatisticalanalysis.Ithasbeenproved,forexample,thatLRUcanneverresultinmorethanN-
7012
string
0304230321201701reference
7772 2 4440 1 11
000 0 0033 3 00 page
framesinpool
11 3 3222 2 27
Foragivenreferencestring,youneedtocalculatethenumberofpagefaults.
輸入
Thefirstlinecontainsaninteger,thenumberoftestcases.Eachtestcasecontainstwolines,thefirstlineisthecapacityofthemanagementpoolm(0<m≤10000),andthelengthofreferencestringn(0<n≤100000).Thenextlinecontainsexactlynintegers,whichindicatethereferencesequenceofpageframes(pagenumberrangedfrom0ton).
輸出
Foreachtestcase,theoutputshouldcontainsthenumberofpagefaultsthatoccurred.
樣例輸入
3
35
12345
35
12123
320
70120304230321201701
樣例輸出
5
3
12
STTask
YougetaSTtask,thatis:givenastickoneendofwhoismooredontheground,youareaskedtoturnoverthestickbyholdingtheotherend.Whenitreachesthegroundagain,thetaskisfinished.Itistruethatontheprocess,thestickisalwaysonthesameplaneverticaltheground.Andonthisplane,thereislightfromuptodown,sothatwecanseeonthegroundalineofshadow.Lookatthepicture:
Inordertoexpresstheshadowpartandtheun-shadow(lightspace)part,tosimpletheproblemwejustneedtoexpressthelengththat2timesofthelengthofthestickwheretheshadowmayoccur.
Now,givetheproblem:thestickonthebeginningisontheleftofthemooredpoint,andweturnitoncertainangularspeed,usinga‘S’todenoteoneunitofthelightspaceanda‘T’foroneunitoftheshadowline.Besidethat,arealnumberisneededtotellthescalebetweentheshadowlineandthefulllinewhereshadowmaybe.
輸入
Thereisonlyonecase.TwointegersL(0<L≤25)andV(0<V≤90)isgiven.Listhelengthofthestick;Vistheangularspeedoftheturningtask,inanglepersecond
輸出
Foreverysecondduringthetask,youareaskedtotelltheshapeoftheshadowontheground.Seethesample:‘S’forthelightspaceand‘T’fortheshadow.
樣例輸入
2515
樣例輸出
TTTTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.50000
STTTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.48296
SSSTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.43301
SSSSSSSTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.35355
SSSSSSSSSSSSTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.25000
SSSSSSSSSSSSSSSSSSSTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.12941
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 0.00000
SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTSSSSSSSSSSSSSSSSSSS 0.12941
SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTSSSSSSSSSSSS 0.25000
SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTSSSSSSS 0.35355
SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTSSS 0.43301
SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTTTS 0.48296
SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTTTT 0.50000
提示
Ifthestickis3inlength,andtheshadowlineis1.49,wehavetheanswerthismoment:SSTSSS0.24833Ifthestickis3inlength,andtheshadowlineis1.51,wehavetheanswerthismoment:STTSSS0.25167Thatis,thenumberof‘T’alwaysisthenearestintegerofthelengthofshadow.
8numbersproblem
Ithinkalmosteveryacmerwillknowthe8numbersproblemwhichisaveryfamousproblem.Thegamebeginfromtheinitialstateofa3*3matrixwhichmakesupof8numbers(1-8)andablankblock(0).movetheblankblockwithitsadjacentblockuntilreachtheobjectivestate.Itisobviousthattheblankblockhasfourdirectionswhichitcanmovetowhenitisatthemiddleposition,i.e.up,down,left,right.Also,ithastwodirectionswhenitisatthecornerofthematrixandthreedirectionsatotherposintion.Formexample,theinitialstateofthematrix:
803
214
765
theobjectivestate:
123
804
765
andwegiveavalidmovingpath:
8
0
3
8
1
3
8
1
3
0
1
3
1
0
3
1
2
3
2
1
4
>2
0
4
>0
2
4
>8
2
4
>8
2
4
>8
0
4
7
6
5
7
6
5
7
6
5
7
6
5
7
6
5
7
6
5
Moreover,thepathwithleaststepsiscalledtheshortestpath.Andthe8numbersischeckwhethertherearethepathfromtheinitialstatetotheobjectivestateandifitexists,givetheshortestpath.
Andweallknowhuicpc229isnotverygoodatsearch,sohehasn'tsolvedthisproblemnow.Buthehassolvedanothereasyproblem.Theproblemisdescribedasfollow:
Giveaninitialstateofthematrix,andgiveasequenceofmoving.Foreverymoving,iftheblankblockcanmovetothedirectionasthemoving,moveit,otherwiseignorethismoving.Andwewanttoknowthefinalstateofthematrix.
輸入
Thefirstlineoftheinputisoneintegert,thenumberoftestcase.Foreachtestcase:
Threelinesrespondtotheinitialstateofthematrix,andtherewillbethreenumbersoneachofthethreelines.
Followbyanintergermcorrespondingtothenumberofmoving.
Thenextmline,everylinecontainonlyonecharacter:
U:movetheblankblockupforoneblock.D:movetheblankblockdownforoneblock.L:movetheblankblockleftforoneblock.
R:movetheblankblockrightforoneblock.
輸出
Foreachtestcaseoutputthefinalstateofthematrixforthreelinesasabove.Andtherewillbeablankspacebetweeneverytwonumbersonthesameline.Andyoushouldoutputoneblanklineaftereachtestcase.
樣例輸入
1
803
214
765
2
DR
樣例輸出
813
240
765
TheQianJinTeachingBuilding
時間限制(普通/Java):10000MS/100000MS 運行內存限制:65536KByte
Whenyoutrytosolvethisproblem,Ithinkthereisonlyatmostonemonthleftforourfootmen(FM2008)stayingatourAlmaMater.Ithinkthesefouryearsisthehappiestandmostimportanttimeinallmylife.IlearnedtostudyandmetsomanysincerefriendsinourschoolespeciallyinourACMteam.Itistoosimplethatjustsay“THX”toexpressmysincerethank,butImustsay“Thankyou“foryouall.IsendmyparticularthanktoDoctorWuforyouhelpandcaretomeandthewholeACMteam.Huicpc3-15,myteammateatfootmen,isthemostimportantbosomfriendinmylife.WeareclassmatesintheMathematicsandAppliedMathematics05-
1.WetookpartintheMathematicalModelingContesttogether,andparticipatedinACMContestasteammates.Wesurmountedthedifficulties,sufferedthedefeatandenjoyedthegladofsuccesstogether.Togetherwetastedthejoysandsorrowsoflife.Butitisalwaystruethatpleasanthoursflypast,anditistimetopart.Ican’thelptorunbacktothetimewhenwestudiedintheQianjingteachingbuildingforourexaminationsandlearnedtheknowledgeaboutalgorithmandprogramming.
Asweallknowthenumbersofseatsintheclassroomsarenotalwayssame.Whentheexaminationweekcomes,therewillbethesecasesthatitistoolargeforaclassbutthereisnosmallclassroomwhichisenoughforthem.Somanyseatsareleftunusedbutwecan’tuse.SoeverytimewewenttotheQianjinteachingbuildingtostudy,itisahardtimetofindafreeclassroom.Ireallylikeifth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關于廣告類實習報告范文5篇
- 港口使用權租賃合同
- 環(huán)保項目主管聘用合同
- 機場跑道周邊綠化草皮合同
- 體育場館吊頂建設項目合同
- 建筑智能化二建工程師聘用合同
- 紡織廠物料吊籃租賃合同
- 玻璃幕墻施工合同協(xié)議書
- 影視制作與導演合作協(xié)議
- 煤炭開采合作的經濟合同管理辦法
- 生物丨金太陽(25-69C)廣東省2025屆高三10月大聯(lián)考生物試卷及答案
- 期中測試卷(試題)2024-2025學年人教版數學三年級上冊
- 車隊車輛掛靠合同模板
- 期中 (試題) -2024-2025學年人教PEP版英語四年級上冊
- 動物疫病防治員(高級)理論考試題及答案
- 跨境電商行業(yè)研究框架專題報告
- 提升初中生英語寫作
- 2024年深圳市優(yōu)才人力資源有限公司招考聘用綜合網格員(派遣至吉華街道)高頻500題難、易錯點模擬試題附帶答案詳解
- 高中政治必修四哲學與文化知識點總結
- 湖北省襄陽市2023-2024學年六年級上學期語文期中考試試卷(含答案)
- 醫(yī)學課件血管性癡呆
評論
0/150
提交評論