版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年北京市海淀區(qū)交大附中數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“”的一個(gè)充要條件是()A. B.C. D.2.對(duì)任意實(shí)數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)3.如圖是拋物線形拱橋,當(dāng)水面在n時(shí),拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.4.已知雙曲線的左、右焦點(diǎn)分別為,,P為雙曲線C上一點(diǎn),,直線與y軸交于點(diǎn)Q,若,則雙曲線C的漸近線方程為()A. B.C. D.5.已知雙曲線,點(diǎn)F為其左焦點(diǎn),點(diǎn)B,若BF所在直線與雙曲線的其中一條漸近線垂直,則該雙曲線的離心率為()A. B.C. D.6.拋物線有如下光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對(duì)稱軸的方向射出;反之,平行于拋物線對(duì)稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線,O為坐標(biāo)原點(diǎn),一條平行于x軸的光線從點(diǎn)射入,經(jīng)過C上的點(diǎn)A反射后,再經(jīng)C上另一點(diǎn)B反射后,沿直線射出,經(jīng)過點(diǎn)N.下列說法正確的是()A.若,則 B.若,則平分C.若,則 D.若,延長(zhǎng)AO交直線于點(diǎn)D,則D,B,N三點(diǎn)共線7.已知?jiǎng)訄AM與直線y=2相切,且與定圓C:外切,求動(dòng)圓圓心M的軌跡方程A. B.C. D.8.已知函數(shù),若在處取得極值,且恒成立,則實(shí)數(shù)的最大值為()A. B.C. D.9.在等比數(shù)列中,,則的公比為()A. B.C. D.10.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件11.已知橢圓的左右焦點(diǎn)分別為,,點(diǎn)B為短軸的一個(gè)端點(diǎn),則的周長(zhǎng)為()A.20 B.18C.16 D.912.已知點(diǎn)O為坐標(biāo)原點(diǎn),拋物線C:的焦點(diǎn)為F,點(diǎn)T在拋物線C的準(zhǔn)線上,線段FT與拋物線C的交點(diǎn)為W,,則()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、雙曲線的左、右焦點(diǎn),A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),且滿足,,則雙曲線的離心率為___________.14.已知函數(shù),則的值是______.15.若函數(shù),則在點(diǎn)處切線的斜率為______16.與同一條直線都相交的兩條直線的位置關(guān)系是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn),橢圓:的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說明理由18.(12分)已知拋物線焦點(diǎn)是,斜率為的直線l經(jīng)過F且與拋物線相交于A、B兩點(diǎn)(1)求該拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;(2)求線段AB的長(zhǎng)19.(12分)已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,滿足,.記.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列前項(xiàng)和,求使得不等式成立的的最小值.20.(12分)如圖,在直三棱柱中,,分別是棱的中點(diǎn),點(diǎn)在線段上.(1)當(dāng)直線與平面所成角最大時(shí),求線段的長(zhǎng)度;(2)是否存在這樣的點(diǎn),使平面與平面所成的二面角的余弦值為,若存在,試確定點(diǎn)的位置,若不存在,說明理由.21.(12分)如圖,AB是半圓O的直徑,C是半圓上一點(diǎn),M是PB的中點(diǎn),平面ABC,且,,.(1)求證:平面PAC;(2)求三棱錐M—ABC體積.22.(10分)(1)已知:方程表示雙曲線;:關(guān)于的不等式有解.若為真,求的取值范圍;(2)已知,,.若p是q的必要不充分條件,求實(shí)數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當(dāng)時(shí),滿足,推不出,故不充分;B.當(dāng)時(shí),滿足,推不出,故不充分;C.當(dāng)時(shí),推不出,故不必要;D.因?yàn)椋食湟?,故選:D2、A【解析】判斷直線恒過定點(diǎn),可知定點(diǎn)在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過定點(diǎn),將點(diǎn)代入圓的方程可得,則點(diǎn)在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.3、D【解析】由題建立平面直角坐標(biāo)系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標(biāo)系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.4、B【解析】由題意可設(shè)且,即得a、b的數(shù)量關(guān)系,進(jìn)而求雙曲線C的漸近線方程.【詳解】由題設(shè),,,又,P為雙曲線C上一點(diǎn),∴,又,為的中點(diǎn),∴,即,∴雙曲線C的漸近線方程為.故選:B.5、C【解析】設(shè)出雙曲線半焦距c,利用斜率坐標(biāo)公式結(jié)合垂直關(guān)系列式計(jì)算作答.【詳解】設(shè)雙曲線半焦距為c,則,直線BF的斜率為,雙曲線的漸近線為:,因直線BF與雙曲線的一條漸近線垂直,則有,即,于是得,而,解得,所以雙曲線的離心率為.故選:C6、D【解析】根據(jù)求出焦點(diǎn)為、點(diǎn)坐標(biāo),可得直線的方程與拋物線方程聯(lián)立得點(diǎn)坐標(biāo),由兩點(diǎn)間的距離公式求出可判斷AC;時(shí)可得,.由可判斷B;求出點(diǎn)坐標(biāo)可判斷D.【詳解】如圖,若,則,C的焦點(diǎn)為,因?yàn)?,所以,直線的方程為,整理得,與拋物線方程聯(lián)立得,解得或,所以,所以,選項(xiàng)A錯(cuò)誤;時(shí),因?yàn)?,所以.又,,所以不平分,選項(xiàng)B不正確;若,則,C的焦點(diǎn)為,因?yàn)?,所以,直線的方程為,所以,所以,選項(xiàng)C錯(cuò)誤;若,則,C的焦點(diǎn)為,因?yàn)椋?,直線的方程為,所以,直線的方程為,延長(zhǎng)交直線于點(diǎn)D,所以則,所以D,B,N三點(diǎn)共線,選項(xiàng)D正確;故選:D.7、D【解析】由題意動(dòng)圓M與直線y=2相切,且與定圓C:外切∴動(dòng)點(diǎn)M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點(diǎn)M的軌跡是以C(0,-3)為焦點(diǎn),直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點(diǎn):軌跡方程8、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,所以,即得,故選:D9、D【解析】利用等比數(shù)列的性質(zhì)把方程都變成和有關(guān)的式子后進(jìn)行求解.【詳解】由等比數(shù)列的等比中項(xiàng)性質(zhì)可得,又,所以,因,所以,所以,故選:D.10、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B11、B【解析】根據(jù)橢圓的定義求解【詳解】由橢圓方程知,所以,故選:B12、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進(jìn)行求解即可.【詳解】由已知得:,該拋物線的準(zhǔn)線方程為:,所以設(shè),因?yàn)椋?,由拋物線的定義可知:,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】可得四邊形為矩形,運(yùn)用三角函數(shù)的定義可得,,由雙曲線的定義和矩形的性質(zhì),可得,由離心率公式求解即可.【詳解】、為雙曲線的左、右焦點(diǎn),可得四邊形為矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:得出四邊形為矩形,利用雙曲線的定義解決焦點(diǎn)三角形問題.14、【解析】求出,代值計(jì)算可得的值.【詳解】因?yàn)?,則,因此,.故答案為:.15、【解析】根據(jù)條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點(diǎn)處切線的斜率為.故答案為:16、平行,相交或者異面【解析】由空間中兩直線的位置關(guān)系求解即可【詳解】由題意與同一條直線都相交的兩條直線的位置關(guān)系可能是:平行,相交或者異面,故答案為:平行,相交或者異面,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長(zhǎng),求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)椋?,所以,所以橢圓的方程為【小問2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.18、(1)拋物線的方程為,其準(zhǔn)線方程為,(2)【解析】(1)根據(jù)焦點(diǎn)可求出的值,從而求出拋物線的方程,即可得到準(zhǔn)線方程;(2)設(shè),,,,將直線的方程與拋物線方程聯(lián)立消去,整理得,得到根與系數(shù)的關(guān)系,由拋物線的定義可知,代入即可求出所求【小問1詳解】解:由焦點(diǎn),得,解得所以拋物線的方程為,其準(zhǔn)線方程為,【小問2詳解】解:設(shè),,,直線的方程為.與拋物線方程聯(lián)立,得,消去,整理得,由拋物線定義可知,所以線段的長(zhǎng)為19、(1),.(2)5.【解析】(1)根據(jù)數(shù)列的遞推公式探求出其項(xiàng)間關(guān)系,由此求出的公比,進(jìn)而求得,的通項(xiàng)公式.(2)利用(1)的結(jié)論結(jié)合錯(cuò)位相減法求出,再將不等式變形,經(jīng)推理計(jì)算得解.【小問1詳解】解:設(shè)正項(xiàng)等比數(shù)列的公比為,當(dāng)時(shí),,即,則有,即,而,解得,又,則,所以,所以數(shù)列,的通項(xiàng)公式分別為:,.【小問2詳解】解:由(1)知,,則,則,兩式相減得:于是得,由得:,即,令,,顯然,,,,,,由,解得,即數(shù)列在時(shí)是遞增的,于是得當(dāng)時(shí),即,,則,所以不等式成立的n的最小值是5.20、(1)(2)存在,A1P=【解析】(1)作出線面角,因?yàn)閷?duì)邊為定值,所以鄰邊最小時(shí)線面角最大;(2)建立空間直角坐標(biāo)系,由向量法求二面角列方程可得.【小問1詳解】直線PN與平面A1B1C1所成的角即為直線PN與平面ABC所成角,過P作,即PN與面ABC所成的角,因?yàn)镻H為定值,所以當(dāng)NH最小時(shí)線面角最大,因?yàn)楫?dāng)P為中點(diǎn)時(shí),,此時(shí)NH最小,即PN與平面ABC所成角最大,此時(shí).【小問2詳解】以AB,AC,AA1為x,y,z軸建立空間坐標(biāo)系,則:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)設(shè)=,,,設(shè)平面PMN的法向量為,則,即,解得,平面AC1C的法向量為,.所以P點(diǎn)為A1B1的四等分點(diǎn),且A1P=.21、(1)證明見解析(2)2【解析】(1)依題意可得,再由平面,得到,即可證明平面;(2)連接,可證,即可得到平面,為三棱錐的高,再根據(jù)錐體的體積公式計(jì)算可得;【詳解】(1)證明:因?yàn)槭前雸A的直徑,所以.因?yàn)槠矫?,平面,所以,又因?yàn)槠矫?,平面,且所以平?(2)解:因?yàn)?,,所以?連接.因?yàn)?、分別是,的中點(diǎn),所以,.又平面.所以平面.因此為三棱錐的高.所以.【點(diǎn)睛】本題考查線面垂直的證明,錐體的體積的計(jì)算,屬于中檔題.22、(1)1m2;(2)(0,1]【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年魯教五四新版八年級(jí)地理上冊(cè)階段測(cè)試試卷
- 2025年蘇教新版選修3地理上冊(cè)階段測(cè)試試卷含答案
- 2025年粵人版九年級(jí)生物上冊(cè)月考試卷含答案
- 二零二五年度衛(wèi)生間清潔劑研發(fā)與供應(yīng)合同3篇
- 二零二五年度2025版文化創(chuàng)意產(chǎn)業(yè)融資合同范本4篇
- 2025年度環(huán)保工程派遣人員勞務(wù)合同范本4篇
- 擔(dān)保合同約定條款協(xié)議書(2篇)
- 2025年度摩托車租賃平臺(tái)合作合同范本3篇
- 2025年度牧草種植基地環(huán)境保護(hù)合同范本3篇
- 二零二五版苗木種植基地林業(yè)病蟲害防治合同2篇
- GB/T 16895.3-2024低壓電氣裝置第5-54部分:電氣設(shè)備的選擇和安裝接地配置和保護(hù)導(dǎo)體
- 計(jì)劃合同部部長(zhǎng)述職報(bào)告范文
- 人教版高一地理必修一期末試卷
- GJB9001C質(zhì)量管理體系要求-培訓(xùn)專題培訓(xùn)課件
- 二手車車主寄售協(xié)議書范文范本
- 窗簾采購(gòu)?fù)稑?biāo)方案(技術(shù)方案)
- 五年級(jí)上冊(cè)小數(shù)除法豎式計(jì)算練習(xí)300題及答案
- 語(yǔ)言規(guī)劃講義
- 生活用房設(shè)施施工方案模板
- 上海市楊浦區(qū)2022屆初三中考二模英語(yǔ)試卷+答案
- GB/T 9755-2001合成樹脂乳液外墻涂料
評(píng)論
0/150
提交評(píng)論